

 Navigation

 	
 index

 	salt-cloud 0.8.11 documentation

Warning

Outdated documentation

The salt-cloud project has been merged into the main Salt repository
as of Salt’s 2014.1 release [http://docs.saltstack.com/en/latest/topics/releases/2014.1.0.html#salt-cloud-merged-into-salt].

We recommend installing salt-cloud using a package manager as usual. Some
distributions (RHEL/Cent) have split packages and so the package name will
be salt-cloud and require a separate install. Some distributions do not
split packages and it will be bundled within the salt-master package.

Verify which version you have installed by running salt-cloud
--version; if the version number does not start with 2014 you are
running an old release.

No further development will take place in this repository. It will be left
in the current state for historical purposes. Issues should be filed on the
Salt repository.

Current documentation now lives within the main Salt documentation.

	The main salt-cloud Table of Contents [http://docs.saltstack.com/en/latest/topics/cloud/index.html]

	Full list of cloud modules [http://docs.saltstack.com/en/latest/salt-modindex.html#cap-c]

	Archived release notes [http://docs.saltstack.com/en/latest/topics/cloud/releases/index.html]

The documentation for the final salt-cloud release, v0.8.11, is included
below.

Salt Cloud Documentation

Salt cloud is a public cloud provisioning tool. Salt cloud is made to integrate
Salt into cloud providers in a clean way so that minions on public cloud
systems can be quickly and easily modeled and provisioned.

Salt cloud allows for cloud based minions to be managed via virtual machine
maps and profiles. This means that individual cloud VMs can be created, or
large groups of cloud VMs can be created at once or managed.

Virtual machines created with Salt cloud install salt on the target virtual
machine and assign it to the specified master. This means that virtual
machines can be provisioned and then potentially never logged into.

While Salt Cloud has been made to work with Salt, it is also a generic
cloud management platform and can be used to manage non Salt centric clouds.

Getting Started

	Installing salt cloud

Some quick guides covering getting started with Amazon AWS, Rackspace, and
Parallels.

	Getting Started With AWS

	Getting Started With Rackspace

	Getting Started With Parallels

	Getting Started With SoftLayer

Core Configuration

The core configuration of Salt cloud is handled in the cloud configuration
file. This file is comprised of global configurations for interfacing with
cloud providers.

	Core Configuration

Windows Configuration

Salt Cloud may be used to spin up a Windows minion, and then install the Salt
Minion client on that instance. At this time, Salt Cloud itself still needs to
be run from a Linux or Unix machine.

	Windows Configuration

Using Salt Cloud

Salt cloud works via profiles and maps. Simple profiles for cloud VMs are
defined and can be used directly, or a map can be defined specifying
a large group of virtual machines to create.

	Profiles

	Maps

Once a VM has been deployed, a number of actions may be available to perform
on it, depending on the specific cloud provider.

	Actions

Depending on your cloud provider, a number of functions may also be available
which do not require a VM to be specified.

	Functions

Miscellaneous Options

	Miscellaneous

Extending Salt Cloud

Salt cloud extensions work in a way similar to Salt modules. Therefore
extending Salt cloud to manage more public cloud providers and operating
systems is easy.

	Adding Cloud Providers

	Adding OS Support

Feature Comparison

A table is available which compares various features available across all
supported cloud providers.

	Features

Releases

	Release Notes

Reference

	Command-line interface

	Full table of contents

 Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	salt-cloud 0.8.11 documentation

Index

 Symbols
 | S

Symbols

 	

 	
 --json-out

 	

 	salt-cloud command line option

 	
 --list-images

 	

 	salt-cloud command line option

 	
 --list-sizes

 	

 	salt-cloud command line option

 	
 --no-color

 	

 	salt-cloud command line option

 	
 --raw-out

 	

 	salt-cloud command line option

 	
 --text-out

 	

 	salt-cloud command line option

 	
 --yaml-out

 	

 	salt-cloud command line option

 	
 -C CLOUD_CONFIG, --cloud-config=CLOUD_CONFIG

 	

 	salt-cloud command line option

 	
 -d, --destroy

 	

 	salt-cloud command line option

 	
 -F, --full-query

 	

 	salt-cloud command line option

 	

 	
 -H, --hard

 	

 	salt-cloud command line option

 	
 -h, --help

 	

 	salt-cloud command line option

 	
 -m MAP, --map=MAP

 	

 	salt-cloud command line option

 	
 -M MASTER_CONFIG, --master-config=MASTER_CONFIG

 	

 	salt-cloud command line option

 	
 -p PROFILE, --profile=PROFILE

 	

 	salt-cloud command line option

 	
 -P, --parallel

 	

 	salt-cloud command line option

 	
 -Q, --query

 	

 	salt-cloud command line option

 	
 -S, --select-query

 	

 	salt-cloud command line option

 	
 -V VM_CONFIG, --profiles=VM_CONFIG, --vm_config=VM_CONFIG

 	

 	salt-cloud command line option

S

 	

 	
 salt-cloud command line option

 	

 	--json-out

 	--list-images

 	--list-sizes

 	--no-color

 	--raw-out

 	--text-out

 	--yaml-out

 	-C CLOUD_CONFIG, --cloud-config=CLOUD_CONFIG

 	-F, --full-query

 	-H, --hard

 	-M MASTER_CONFIG, --master-config=MASTER_CONFIG

 	-P, --parallel

 	-Q, --query

 	-S, --select-query

 	-V VM_CONFIG, --profiles=VM_CONFIG, --vm_config=VM_CONFIG

 	-d, --destroy

 	-h, --help

 	-m MAP, --map=MAP

 	-p PROFILE, --profile=PROFILE

 Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

 topics/cloud.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Writing Cloud Provider Modules

Salt Cloud runs on a module system similar to the main Salt project. The
modules inside saltcloud exist in the saltcloud/clouds directory of the
salt-cloud source.

Adding a provider requires that a cloud module is created. The cloud module
needs to only impliment a single function create, which will accept a
single virtual machine data structure. Whatever functions need to be called to
execute the create function can and should be included in the provider module.

A good example to follow for writing a cloud provider module is the module
provided for Linode:

https://github.com/saltstack/salt-cloud/blob/master/saltcloud/clouds/linode.py

If possible it is prefered that libcloud is used to connect to public cloud
systems, but if libcloud support is not available or another system makes more
sense then by all means, use the other system to connect to the cloud provider.

An example of a non-libcloud provider is the ec2 module:

https://github.com/saltstack/salt-cloud/blob/develop/saltcloud/clouds/ec2.py

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/parallels.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Getting Started With Parallels

Parallels Cloud Server is a product by Parallels that delivers a cloud hosting
solution. The PARALLELS module for Salt Cloud enables you to manage instances
hosted by a provider using PCS. Further information can be found at:

http://www.parallels.com/products/pcs/

		Using the old format, set up the cloud configuration at /etc/salt/cloud:

Set up the location of the salt master
#
minion:
 master: saltmaster.example.com

Set the PARALLELS access credentials (see below)
#
PARALLELS.user: myuser
PARALLELS.password: badpass

Set the access URL for your PARALLELS provider
#
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

		Using the new format, set up the cloud configuration at
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/parallels.conf:

my-parallels-config:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Set the PARALLELS access credentials (see below)
 #
 user: myuser
 password: badpass

 # Set the access URL for your PARALLELS provider
 #
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 provider: parallels

Access Credentials

The user, password and url will be provided to you by your cloud
provider. These are all required in order for the PARALLELS driver to work.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/parallels.conf:

		Using the old cloud configuration format:

parallels-ubuntu:
 provider: parallels
 image: ubuntu-12.04-x86_64

		Using the new cloud configuration format and the cloud configuration example
from above:

parallels-ubuntu:
 provider: my-parallels-config
 image: ubuntu-12.04-x86_64

The profile can be realized now with a salt command:

salt-cloud -p parallels-ubuntu myubuntu

This will create an instance named myubuntu on the cloud provider. The
minion that is installed on this instance will have an id of myubuntu.
If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt myubuntu test.ping

Required Settings

The following settings are always required for PARALLELS:

		Using the old cloud configuration format:

PARALLELS.user: myuser
PARALLELS.password: badpass
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

		Using the new cloud configuration format:

my-parallels-config:
 user: myuser
 password: badpass
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 provider: parallels

Optional Settings

Unlike other cloud providers in Salt Cloud, Parallels does not utilize a
size setting. This is because Parallels allows the end-user to specify a
more detailed configuration for their instances, than is allowed by many other
cloud providers. The following options are available to be used in a profile,
with their default settings listed.

Description of the instance. Defaults to the instance name.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpu_number: 1
cpu_power: 1000

How many megabytes of RAM
ram: 256

Bandwidth available, in kbps
bandwidth: 100

How many public IPs will be assigned to this instance
ip_num: 1

Size of the instance disk (in GiB)
disk_size: 10

Username and password
ssh_username: root
password: <value from PARALLELS.password>

The name of the image, from ``salt-cloud --list-images parallels``
image: ubuntu-12.04-x86_64

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/profiles.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

VM Profiles

Salt cloud designates virtual machines inside the profile configuration file.
The profile configuration file defaults to /etc/salt/cloud.profiles and is
a yaml configuration. The syntax for declaring profiles is simple:

fedora_rackspace:
 provider: rackspace
 image: Fedora 17
 size: 256 server
 script: Fedora

A few key pieces of information need to be declared and can change based on the
public cloud provider. A number of additional parameters can also be inserted:

centos_rackspace:
 provider: rackspace
 image: CentOS 6.2
 size: 1024 server
 script: RHEL6
 minion:
 master: salt.example.com
 append_domain: webs.example.com
 grains:
 role: webserver

The image must be selected from available images. Similarly, sizes must be
selected from the list of sizes. To get a list of available images and sizes
use the following command:

salt-cloud --list-images openstack
salt-cloud --list-sizes openstack

Some parameters can be specified in the main Salt cloud configuration file and
then are applied to all cloud profiles. For instance if only a single cloud
provider is being used then the provider option can be declared in the Salt
cloud configuration file.

Multiple Configuration Files

In addition to /etc/salt/cloud.profiles, profiles can also be specified in
any file matching cloud.profiles.d/*conf which is a sub-directory relative
to the profiles configuration file(with the above configuration file as an
example, /etc/salt/cloud.profiles.d/*.conf). This allows for more
extensible configuration, and plays nicely with various configuration
management tools as well as version control systems.

Larger Example

rhel_aws:
 provider: aws
 image: ami-e565ba8c
 size: Micro Instance
 script: RHEL6
 minion:
 cheese: edam

ubuntu_aws:
 provider: aws
 image: ami-7e2da54e
 size: Micro Instance
 script: Ubuntu
 minion:
 cheese: edam

ubuntu_rackspace:
 provider: rackspace
 image: Ubuntu 12.04 LTS
 size: 256 server
 script: Ubuntu
 minion:
 cheese: edam

fedora_rackspace:
 provider: rackspace
 image: Fedora 17
 size: 256 server
 script: Fedora
 minion:
 cheese: edam

cent_linode:
 provider: linode
 image: CentOS 6.2 64bit
 size: Linode 512
 script: RHEL6

cent_gogrid:
 provider: gogrid
 image: 12834
 size: 512MB
 script: RHEL6

cent_joyent:
 provider: joyent
 image: centos-6
 script: RHEL6
 size: Small 1GB

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/softlayer.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Getting Started With SoftLayer

SoftLayer is a public cloud provider, and baremetal hardware hosting provider.

Dependencies

The SoftLayer driver for Salt Cloud requires the softlayer package, which is
available at PyPi:

https://pypi.python.org/pypi/SoftLayer

This package can be installed using pip or easy_install:

pip install softlayer
easy_install softlayer

Configuration

Set up the cloud config at /etc/salt/cloud.providers:

Note: These examples are for /etc/salt/cloud.providers

 my-softlayer:
 # Set up the location of the salt master
 minion:
 master: saltmaster.example.com

 # Set the SoftLayer access credentials (see below)
 user: MYUSER1138
 apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'

 provider: softlayer

 my-softlayer-hw:
 # Set up the location of the salt master
 minion:
 master: saltmaster.example.com

 # Set the SoftLayer access credentials (see below)
 user: MYUSER1138
 apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'

 provider: softlayer-hw

Access Credentials

The user setting is the same user as is used to log into the SoftLayer
Administration area. The apikey setting is found inside the Admin area after
logging in:

		Hover over the Administrative menu item.

		Click the API Access link.

		The apikey is located next to the user setting.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_softlayer_ubuntu:
 provider: my-softlayer
 image: UBUNTU_LATEST
 cpu_number: 1
 ram: 1024
 disk_size: 100
 local_disk: True
 hourly_billing: True
 domain: example.com
 location: sjc01
 # Optional
 max_net_speed: 1000
 private_vlan: 396
 private_network: True
 private_ssh: True
 # May be used _instead_of_ image
 global_identifier: 320d8be5-46c0-dead-cafe-13e3c51

Most of the above items are required; optional items are specified below.

image

Images to build an instance can be found using the –list-images option:

salt-cloud --list-images my-softlayer

The setting used will be labeled as template.

cpu_number

This is the number of CPU cores that will be used for this instance. This
number may be dependent upon the image that is used. For instance:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core):

 name:
 Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core)
 template:
 REDHAT_6_64
Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core):

 name:
 Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core)
 template:
 REDHAT_6_64

Note that the template (meaning, the image option) for both of these is the
same, but the names suggests how many CPU cores are supported.

ram

This is the amount of memory, in megabytes, that will be allocated to this
instance.

disk_size

The amount of disk space that will be allocated to this image, in megabytes.

local_disk

When true the disks for the computing instance will be provisioned on the host
which it runs, otherwise SAN disks will be provisioned.

hourly_billing

When true the computing instance will be billed on hourly usage, otherwise it
will be billed on a monthly basis.

domain

The domain name that will be used in the FQDN (Fully Qualified Domain Name) for
this instance. The domain setting will be used in conjunction with the
instance name to form the FQDN.

location

Images to build an instance can be found using the –list-locations option:

salt-cloud --list-location my-softlayer

max_net_speed

Specifies the connection speed for the instance’s network components. This
setting is optional. By default, this is set to 10.

public_vlan

If it is necessary for an instance to be created within a specific frontend
VLAN, the ID for that VLAN can be specified in either the provider or profile
configuration.

This ID can be queried using the list_vlans function, as described below. This
setting is optional.

private_vlan

If it is necessary for an instance to be created within a specific backend VLAN,
the ID for that VLAN can be specified in either the provider or profile
configuration.

This ID can be queried using the list_vlans function, as described below. This
setting is optional.

private_network

If a server is to only be used internally, meaning it does not have a public
VLAN associated with it, this value would be set to True. This setting is
optional. The default is False.

private_ssh

Whether to run the deploy script on the server using the public IP address
or the private IP address. If set to True, Salt Cloud will attempt to SSH into
the new server using the private IP address. The default is False. This
settiong is optional.

global_identifier

When creating an instance using a custom template, this option is set to the
corresponding value obtained using the list_custom_images function. This
option will not be used if an image is set, and if an image is not set, it
is required.

The profile can be realized now with a salt command:

salt-cloud -p base_softlayer_ubuntu myserver

Using the above configuration, this will create myserver.example.com.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt 'myserver.example.com' test.ping

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_softlayer_hw_centos:
 provider: my-softlayer-hw
 # CentOS 6.0 - Minimal Install (64 bit)
 image: 13963
 # 2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
 size: 1921
 # 250GB SATA II
 hdd: 19
 # San Jose 01
 location: 168642
 domain: example.com
 # Optional
 vlan: 396
 port_speed: 273
 banwidth: 248

Most of the above items are required; optional items are specified below.

image

Images to build an instance can be found using the –list-images option:

salt-cloud --list-images my-softlayer-hw

A list of id`s and names will be provided. The `name will describe the
operating system and architecture. The id will be the setting to be used in
the profile.

size

Sizes to build an instance can be found using the –list-sizes option:

salt-cloud --list-sizes my-softlayer-hw

A list of id`s and names will be provided. The `name will describe the speed
and quantity of CPU cores, and the amount of memory that the hardware will
contain. The id will be the setting to be used in the profile.

hdd

There are currently two sizes of hard disk drive (HDD) that are available for
hardware instances on SoftLayer:

19: 250GB SATA II
1267: 500GB SATA II

The hdd setting in the profile will be either 19 or 1267. Other sizes may be
added in the future.

location

Locations to build an instance can be found using the –list-images option:

salt-cloud --list-locations my-softlayer-hw

A list of IDs and names will be provided. The location will describe the
location in human terms. The id will be the setting to be used in the profile.

domain

The domain name that will be used in the FQDN (Fully Qualified Domain Name) for
this instance. The domain setting will be used in conjunction with the
instance name to form the FQDN.

vlan

If it is necessary for an instance to be created within a specific VLAN, the ID
for that VLAN can be specified in either the provider or profile configuration.

This ID can be queried using the list_vlans function, as described below.

port_speed

Specifies the speed for the instance’s network port. This setting refers to an
ID within the SoftLayer API, which sets the port speed. This setting is
optional. The default is 273, or, 100 Mbps Public & Private Networks. The
following settings are available:

		273: 100 Mbps Public & Private Networks

		274: 1 Gbps Public & Private Networks

		21509: 10 Mbps Dual Public & Private Networks (up to 20 Mbps)

		21513: 100 Mbps Dual Public & Private Networks (up to 200 Mbps)

		2314: 1 Gbps Dual Public & Private Networks (up to 2 Gbps)

		272: 10 Mbps Public & Private Networks

bandwidth

Specifies the network bandwidth available for the instance. This setting refers
to an ID within the SoftLayer API, which sets the bandwidth. This setting is
optional. The default is 248, or, 5000 GB Bandwidth. The following settings are
available:

		248: 5000 GB Bandwidth

		129: 6000 GB Bandwidth

		130: 8000 GB Bandwidth

		131: 10000 GB Bandwidth

		36: Unlimited Bandwidth (10 Mbps Uplink)

		125: Unlimited Bandwidth (100 Mbps Uplink)

Actions

The following actions are currently supported by the SoftLayer Salt Cloud
driver.

This action is a thin wrapper around –full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

Functions

The following functions are currently supported by the SoftLayer Salt Cloud
driver.

This function lists all VLANs associated with the account, and all known data
from the SoftLayer API concerning those VLANs.

$ salt-cloud -f list_vlans my-softlayer
$ salt-cloud -f list_vlans my-softlayer-hw

The id returned in this list is necessary for the vlan option when creating
an instance.

This function lists any custom templates associated with the account, that can
be used to create a new instance.

$ salt-cloud -f list_custom_images my-softlayer

The globalIdentifier returned in this list is necessary for the
global_identifier option when creating an image using a custom template.

Optional Products for SoftLayer HW

The softlayer-hw provider supports the ability to add optional products, which
are supported by SoftLayer’s API. These products each have an ID associated with
them, that can be passed into Salt Cloud with the optional_products option:

softlayer_hw_test:
 provider: my-softlayer-hw
 # CentOS 6.0 - Minimal Install (64 bit)
 image: 13963
 # 2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
 size: 1921
 # 250GB SATA II
 hdd: 19
 # San Jose 01
 location: 168642
 domain: example.com
 optional_products:
 # MySQL for Linux
 - id: 28
 # Business Continuance Insurance
 - id: 104

These values can be manually obtained by looking at the source of an order page
on the SoftLayer web interface. For convenience, many of these values are listed
here:

Public Secondary IP Addresses

		22: 4 Public IP Addresses

		23: 8 Public IP Addresses

Primary IPv6 Addresses

		17129: 1 IPv6 Address

Public Static IPv6 Addresses

		1481: /64 Block Static Public IPv6 Addresses

OS-Specific Addon

		17139: XenServer Advanced for XenServer 6.x

		17141: XenServer Enterprise for XenServer 6.x

		2334: XenServer Advanced for XenServer 5.6

		2335: XenServer Enterprise for XenServer 5.6

		13915: Microsoft WebMatrix

		21276: VMware vCenter 5.1 Standard

Control Panel Software

		121: cPanel/WHM with Fantastico and RVskin

		20778: Parallels Plesk Panel 11 (Linux) 100 Domain w/ Power Pack

		20786: Parallels Plesk Panel 11 (Windows) 100 Domain w/ Power Pack

		20787: Parallels Plesk Panel 11 (Linux) Unlimited Domain w/ Power Pack

		20792: Parallels Plesk Panel 11 (Windows) Unlimited Domain w/ Power Pack

		2340: Parallels Plesk Panel 10 (Linux) 100 Domain w/ Power Pack

		2339: Parallels Plesk Panel 10 (Linux) Unlimited Domain w/ Power Pack

		13704: Parallels Plesk Panel 10 (Windows) Unlimited Domain w/ Power Pack

Database Software

		29: MySQL 5.0 for Windows

		28: MySQL for Linux

		21501: Riak 1.x

		20893: MongoDB

		30: Microsoft SQL Server 2005 Express

		92: Microsoft SQL Server 2005 Workgroup

		90: Microsoft SQL Server 2005 Standard

		94: Microsoft SQL Server 2005 Enterprise

		1330: Microsoft SQL Server 2008 Express

		1340: Microsoft SQL Server 2008 Web

		1337: Microsoft SQL Server 2008 Workgroup

		1334: Microsoft SQL Server 2008 Standard

		1331: Microsoft SQL Server 2008 Enterprise

		2179: Microsoft SQL Server 2008 Express R2

		2173: Microsoft SQL Server 2008 Web R2

		2183: Microsoft SQL Server 2008 Workgroup R2

		2180: Microsoft SQL Server 2008 Standard R2

		2176: Microsoft SQL Server 2008 Enterprise R2

Anti-Virus & Spyware Protection

		594: McAfee VirusScan Anti-Virus - Windows

		414: McAfee Total Protection - Windows

Insurance

		104: Business Continuance Insurance

Monitoring

		55: Host Ping

		56: Host Ping and TCP Service Monitoring

Notification

		57: Email and Ticket

Advanced Monitoring

		2302: Monitoring Package - Basic

		2303: Monitoring Package - Advanced

		2304: Monitoring Package - Premium Application

Response

		58: Automated Notification

		59: Automated Reboot from Monitoring

		60: 24x7x365 NOC Monitoring, Notification, and Response

Intrusion Detection & Protection

		413: McAfee Host Intrusion Protection w/Reporting

Hardware & Software Firewalls

		411: APF Software Firewall for Linux

		894: Microsoft Windows Firewall

		410: 10Mbps Hardware Firewall

		409: 100Mbps Hardware Firewall

		408: 1000Mbps Hardware Firewall

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/deploy.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

OS Support for Cloud VMs

Salt Cloud works primarily by executing a script on the virtual machines as
soon as they become available. The script that is executed is referenced in the
cloud profile as the script. In older versions, this was the os
argument. This was changed in 0.8.2.

A number of legacy scripts exist in the deploy directory in the saltcloud
source tree. The preferred method is currently to use the salt-bootstrap
script. A stable version is included with each release tarball starting with
0.8.4. The most updated version can be found at:

https://github.com/saltstack/salt-bootstrap

If you do not specify a script argument, this script will be used at the
default.

If the Salt Bootstrap script does not meet your needs, you may write your own.
The script should be written in bash and is a Jinja template. Deploy scripts
need to execute a number of functions to do a complete salt setup. These
functions include:

		Install the salt minion. If this can be done via system packages this method
is HIGHLY preferred.

		Add the salt minion keys before the minion is started for the first time.
The minion keys are available as strings that can be copied into place in
the Jinja template under the dict named “vm”.

		Start the salt-minion daemon and enable it at startup time.

		Set up the minion configuration file from the “minion” data available in
the Jinja template.

A good, well commented, example of this process is the Fedora deployment
script:

https://github.com/saltstack/salt-cloud/blob/master/saltcloud/deploy/Fedora.sh

A number of legacy deploy scripts are included with the release tarball. None
of them are as functional or complete as Salt Bootstrap, and are still included
for academic purposes.

Other Generic Deploy Scripts

If you want to be assured of always using the latest Salt Bootstrap script,
there are a few generic templates available in the deploy directory of your
saltcloud source tree:

curl-bootstrap
curl-bootstrap-git
python-bootstrap
wget-bootstrap
wget-bootstrap-git

These are example scripts which were designed to be customized, adapted, and
refit to meet your needs. One important use of them is to pass options to
the salt-bootstrap script, such as updating to specific git tags.

Post-Deploy Commands

The best way to run a command on a new minion, is using
Salt’s Reactor system:

http://docs.saltstack.com/topics/reactor/index.html

A common use would be running highstate on the newly setup minion. First
the salt-cloud ‘created’ event has to be watched for in the Master config:

/etc/salt/master.d/reactor.conf:
reactor:
 - 'salt/cloud/*/created':
 - /srv/reactor/created.sls

Then the created.sls file takes the data passed from the event and uses
it to run highstate on the minion:

/srv/reactor/created.sls:
highstate_run:
 cmd.state.highstate:
 - tgt: {{ data['name'] }}

Alternatively, there is experimental support to add a start action in the main
cloud config file:

/etc/salt/cloud
start_action: state.highstate

This is currently considered to be experimental functionality, and may not work
well with all providers. If you experience problems with Salt Cloud hanging
after Salt is deployed, consider using Startup States instead:

http://docs.saltstack.org/en/latest/ref/states/startup.html

Skipping the Deploy Script

For whatever reason, you may want to skip the deploy script altogether. This
results in a VM being spun up much faster, with absolutely no configuration.
This can be set from the command line:

salt-cloud --no-deploy -p micro_aws my_instance

Or it can be set from the main cloud config file:

deploy: False

Or it can be set from the provider’s configuration:

RACKSPACE.user: example_user
RACKSPACE.apikey: 123984bjjas87034
RACKSPACE.deploy: False

Or even on the VM’s profile settings:

ubuntu_aws:
 provider: aws
 image: ami-7e2da54e
 size: Micro Instance
 deploy: False

The default for deploy is True.

In the profile, you may also set the script option to None:

script: None

This is the slowest option, since it still uploads the None deploy script and
executes it.

Updating Salt Bootstrap

Salt Bootstrap can be updated automatically with salt-cloud:

salt-cloud -u
salt-cloud --update-bootstrap

Bear in mind that this updates to the latest (unstable) version, so use with
caution.

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for
salt-bootstrap to put in place. After the script has run, they are deleted. To
keep these files around (mostly for debugging purposes), the –keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done
for images which require the use of sudo, and therefore do not allow remote
root logins, even for file transfers (which makes /root/ unavailable).

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to
them, but salt-bootstrap has been extended quite a bit, and this may be
necessary. script_args can be specified in either the profile or the map file,
to pass arguments to the deploy script:

aws-amazon:
 provider: aws
 image: ami-1624987f
 size: Micro Instance
 ssh_username: ec2-user
 script: bootstrap-salt
 script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

script_args: | head

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/map.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Cloud Map File

A number of options exist when creating virtual machines. They can be managed
directly from profiles and the command line execution, or a more complex map
file can be created. The map file allows for a number of virtual machines to
be created and associated with specific profiles.

Map files have a simple format, specify a profile and then a list of virtual
machines to make from said profile:

fedora_small:
 - web1
 - web2
 - web3
fedora_high:
 - redis1
 - redis2
 - redis3
cent_high:
 - riak1
 - riak2
 - riak3

This map file can then be called to roll out all of these virtual machines. Map
files are called from the salt-cloud command with the -m option:

$ salt-cloud -m /path/to/mapfile

Remember, that as with direct profile provisioning the -P option can be passed
to create the virtual machines in parallel:

$ salt-cloud -m /path/to/mapfile -P

A map file can also be enforced to represent the total state of a cloud
deployment by using the --hard option. When using the hard option any vms
that exist but are not specified in the map file will be destroyed:

$ salt-cloud -m /path/to/mapfile -P -H

Be careful with this argument, it is very dangerous! In fact, it is so
dangerous that in order to use it, you must explicitly enable it in the main
configuration file.

enable_hard_maps: True

A map file can include grains and minion configuration options:

fedora_small:
 - web1:
 minion:
 log_level: debug
 grains:
 cheese: tasty
 omelet: du fromage
 - web2:
 minion:
 log_level: warn
 grains:
 cheese: more tasty
 omelet: with peppers

A map file may also be used with the various query options:

$ salt-cloud -m /path/to/mapfile -Q
{'aws': {'web1': {'id': 'i-e6aqfegb',
 'image': None,
 'private_ips': [],
 'public_ips': [],
 'size': None,
 'state': 0}},
 'web2': {'Absent'}}

...or with the delete option:

$ salt-cloud -m /path/to/mapfile -d
The following virtual machines are set to be destroyed:
 web1
 web2

Proceed? [N/y]

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/function.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Cloud Functions

Cloud functions work much the same way as cloud actions, except that they don’t
perform an operation on a specific instance, and so do not need a machine name
to be specified. However, since they perform an operation on a specific cloud
provider, that provider must be specified.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/misc.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Miscellaneous Salt Cloud Options

This page describes various miscellaneous options available in Salt Cloud

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to
them, but salt-bootstrap has been extended quite a bit, and this may be
necessary. script_args can be specified in either the profile or the map file,
to pass arguments to the deploy script:

aws-amazon:
 provider: aws
 image: ami-1624987f
 size: Micro Instance
 ssh_username: ec2-user
 script: bootstrap-salt
 script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

script_args: | head

Sync After Install

Salt allows users to create custom modules, grains and states which can be
synchronised to minions to extend Salt with further functionality.

This option will inform Salt Cloud to synchronise your custom modules, grains,
states or all these to the minion just after it has been created. For this to
happen, the following line needs to be added to the main cloud
configuration file:

sync_after_install: all

The available options for this setting are:

modules
grains
states
all

Setting up New Salt Masters

It has become increasingly common for users to set up multi-hierarchal
infrastructures using Salt Cloud. This sometimes involves setting up an
instance to be a master in addition to a minion. With that in mind, you can
now law down master configuration on a machine by specifying master options
in the profile or map file.

make_master: True

This will cause Salt Cloud to generate master keys for the instance, and tell
salt-bootstrap to install the salt-master package, in addition to the
salt-minion package.

The default master configuration is usually appropriate for most users, and
will not be changed unless specific master configuration has been added to the
profile or map:

master:
 user: root
 interface: 0.0.0.0

Delete SSH Keys

When Salt Cloud deploys an instance, the SSH pub key for the instance is added
to the known_hosts file for the user that ran the salt-cloud command. When an
instance is deployed, a cloud provider generally recycles the IP address for
the instance. When Salt Cloud attempts to deploy an instance using a recycled
IP address that has previously been accessed from the same machine, the old key
in the known_hosts file will cause a conflict.

In order to mitigate this issue, Salt Cloud can be configured to remove old
keys from the known_hosts file when destroying the node. In order to do this,
the following line needs to be added to the main cloud configuration file:

delete_sshkeys: True

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for
salt-bootstrap to put in place. After the script has run, they are deleted. To
keep these files around (mostly for debugging purposes), the –keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done
for images which require the use of sudo, and therefore do not allow remote
root logins, even for file transfers (which makes /root/ unavailable).

Hide Output From Minion Install

By default Salt Cloud will stream the output from the minion deploy script
directly to STDOUT. Although this can been very useful, in certain cases you
may wish to switch this off. The following config option is there to enable or
disable this output:

display_ssh_output: False

Connection Timeout

There are several stages when deploying Salt where Salt Cloud needs to wait for
something to happen. The VM getting it’s IP address, the VM’s SSH port is
available, etc.

If you find that the Salt Cloud defaults are not enough and your deployment
fails because Salt Cloud did not wait log enough, there are some settings you
can tweak.

Note

All values should be provided in seconds

You can tweak these settings globally, per cloud provider, or event per profile
definition.

wait_for_ip_timeout

The amount of time Salt Cloud should wait for a VM to start and get an IP back
from the cloud provider. Default: 10 minutes.

wait_for_ip_interval

The amount of time Salt Cloud should sleep while querying for the VM’s IP.
Default: 5 seconds.

ssh_connect_timeout

The amount of time Salt Cloud should wait for a successful SSH connection to
the VM. Default: 5 minutes.

wait_for_passwd_timeout

The amount of time until an ssh connection can be established via password or
ssh key. Default 15 seconds.

wait_for_fun_timeout

Some cloud drivers check for an available IP or a successful SSH connection
using a function, namely, SoftLayer and SoftLayer-HW. So, the amount of time
Salt Cloud should retry such functions before failing. Default: 5 minutes.

wait_for_spot_timeout

The amount of time Salt Cloud should wait before an EC2 Spot instance is
available. This setting is only available for the EC2 cloud driver.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/rackspace.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Getting Started With Rackspace

Rackspace is a major public cloud platform and is one of the core platforms
that Salt Cloud has been built to support.

		Using the old format, set up the cloud configuration at /etc/salt/cloud:

Set the location of the salt-master
#
minion:
 master: saltmaster.example.com

Configure Rackspace using the OpenStack plugin
#
OPENSTACK.identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
OPENSTACK.compute_name: cloudServersOpenStack
OPENSTACK.protocol: ipv4

Set the compute region:
#
OPENSTACK.compute_region: DFW

Configure Rackspace authentication credentials
#
OPENSTACK.user: myname
OPENSTACK.tenant: 123456
OPENSTACK.apikey: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

		Using the new format, set up the cloud configuration at
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/rackspace.conf:

my-rackspace-config:
 # Set the location of the salt-master
 #
 minion:
 master: saltmaster.example.com

 # Configure Rackspace using the OpenStack plugin
 #
 identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
 compute_name: cloudServersOpenStack
 protocol: ipv4

 # Set the compute region:
 #
 compute_region: DFW

 # Configure Rackspace authentication credentials
 #
 user: myname
 tenant: 123456
 apikey: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 provider: openstack

Compute Region

Rackspace currently has five compute regions which may be used:

DFW -> Dallas/Forth Worth
ORD -> Chicago
SYD -> Sydney
LON -> London
IAD -> Northern Virginia

Note: Currently the LON region is only avaiable with a UK account, and UK accounts cannot access other regions

Authentication

The user is the same user as is used to log into the Rackspace Control
Panel. The tenant and apikey can be found in the API Keys area of the
Control Panel. The apikey will be labeled as API Key (and may need to be
generated), and tenant will be labeled as Cloud Account Number.

An initial profile can be configured in /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/rackspace.conf:

		Using the old cloud configuration format:

openstack_512:
 provider: openstack
 size: 512MB Standard Instance
 image: Ubuntu 12.04 LTS (Precise Pangolin)

		Using the new cloud configuration format and the example configuration from
above:

openstack_512:
 provider: my-rackspace-config
 size: 512MB Standard Instance
 image: Ubuntu 12.04 LTS (Precise Pangolin)

To instantiate a machine based on this profile:

salt-cloud -p openstack_512 myinstance

This will create a virtual machine at Rackspace with the name myinstance.
This operation may take several minutes to complete, depending on the current
load at the Rackspace data center.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt myinstance test.ping

RackConnect Environments

Rackspace offers a hybrid hosting configuration option called RackConnect that
allows you to use a physical firewall appliance with your cloud servers. When this
service is in use the public_ip assigned by nova will be replaced by a NAT ip on
the firewall. For salt-cloud to work properly it must use the newly assigned “access ip”
instead of the Nova assigned public ip. You can enable that capability by adding this
to your profiles:

openstack_512:
 provider: my-openstack-config
 size: 512MB Standard Instance
 image: Ubuntu 12.04 LTS (Precise Pangolin)
 rackconnect: True

Managed Cloud Environments

Rackspace offers a managed service level of hosting. As part of the managed service level
you have the ability to choose from base of lamp installations on cloud server images.
The post build process for both the base and the lamp installations used Chef to install
things such as the cloud monitoring agent and the cloud backup agent. It also takes care of
installing the lamp stack if selected. In order to prevent the post installation process
from stomping over the bootstrapping you can add the below to your profiles.

openstack_512:
 provider: my-rackspace-config
 size: 512MB Standard Instance
 image: Ubuntu 12.04 LTS (Precise Pangolin)
 managedcloud: True

First and Next Generation Images

Rackspace provides two sets of virtual machine images, first and next
generation. As of 0.8.9 salt-cloud will default to using the next
generation images. To force the use of first generation images, on the profile
configuration please add:

FreeBSD-9.0-512:
 provider: my-rackspace-config
 size: 512MB Standard Instance
 image: FreeBSD 9.0
 force_first_gen: True

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.6.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.6 Release Notes

Welcome to 0.8.6! This is an exciting release, especially for EC2 users. To see
what new features are available, read on.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.6.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

Updated libcloud

This version of Salt Cloud now depends upon libcloud version 0.12.1. Be sure to
update your packages accordingly.

Salt Outputter

Previously, output from Salt Cloud was a mix of log output and print
statements, while the Salt outputter system has grown into a beautiful,
configurable tool. This release of Salt Cloud now takes advantage of the Salt
outputter system, making the output from the salt-cloud command much more
beautiful, easy to read, and usable from other scripts.

Experimental EC2 Driver

A new driver has been introduced for Amazon EC2, to potentially replace the
existing AWS driver. This driver contains several optimizations which have been
found to greatly improve instance creation and deployment. They also allow for
extra functionality to be added, which is not currently available in the AWS
driver. However, it should be noted that the EC2 driver is currently considered
to be experiemental. While existing AWS usage should not currently differ, it
should be expected to change between versions until it is declared stable.

Many of the features of this release are specific to the EC2 driver. Please
check the AWS documentation for configuration and usage of the EC2 driver.

AWS/EC2 Rename on Destroy

When instances on AWS are destroyed, there will be a lag between the time that
the action is sent, and the time that Amazon cleans up the instance. During this
time, the instance still retails a Name tag, which will cause a collision if the
creation of an instance with the same name is attempted before the cleanup
occurs. In order to avoid such collisions, Salt Cloud can be configured to
rename instances when they are destroyed. The new name will look something like:

myinstance-DEL20f5b8ad4eb64ed88f2c428df80a1a0c

In order to enable this, add AWS.rename_on_destroy line to the main
configuration file:

AWS.rename_on_destroy: True

New Action: show_instance

This action is a thin wrapper around –full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

Actions vs Functions

Salt Cloud 0.8.3 introduced the concept of provider-specific actions. However,
these actions were designed to operate on specific instances within a provider.
In order to perform calls on a provider, but not on specific instances,
functions have been added. Currently, only EC2 takes advantage of these.

New Function: show_image

This is a function that describes an AMI on EC2. This will give insight as to
the defaults that will be applied to an instance using a particular AMI.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

EC2: delvol_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for
the root EBS volume for an instance. Many AMIs contain ‘false’ as a default,
resulting in orphaned volumes in the EC2 account, which may unknowingly be
charged to the account. This setting can be added to the profile or map file
for an instance.

delvol_on_destroy: True

This can also be set as a global setting in the EC2 cloud configuration:

EC2.delvol_on_destroy: True

The setting for this may be changed on an existing instance using one of the
following commands:

salt-cloud -a delvol_on_destroy myinstance
salt-cloud -a keepvol_on_destroy myinstance

EC2 Termination Protection

AWS allows the user to enable and disable termination protection on a specific
instance. An instance with this protection enabled cannot be destroyed. The EC2
driver adds a show_term_protect action to the regular AWS functionality.

salt-cloud -a show_term_protect mymachine
salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

EC2 Alternate Endpoint

Normally, ec2 endpoints are build using the region and the service_url. The
resulting endpoint would follow this pattern:

ec2.<region>.<service_url>

This results in an endpoint that looks like:

ec2.us-east-1.amazonaws.com

There are other projects that support an EC2 compatibility layer, which this
scheme does not account for. This can be overridden by specifying the endpoint
directly in the main cloud configuration file:

EC2.endpoint: myendpoint.example.com:1138/services/Cloud

EC2 Volume Management

The EC2 driver has several functions and actions for management of EBS volumes.

Creating Volumes

A volume may be created, independent of an instance. A zone must be specified.
A size or a snapshot may be specified (in GiB). If neither is given, a default
size of 10 GiB will be used. If a snapshot is given, the size of the snapshot
will be used.

salt-cloud -f create_volume ec2 zone=us-east-1b
salt-cloud -f create_volume ec2 zone=us-east-1b size=10
salt-cloud -f create_volume ec2 zone=us-east-1b snapshot=snap12345678

Attaching Volumes

Unattached volumes may be attached to an instance. The following values are
required: name or instance_id, volume_id and device.

salt-cloud -a attach_volume myinstance volume_id=vol-12345 device=/dev/sdb1

Show a Volume

The details about an existing volume may be retreived.

salt-cloud -a show_volume myinstance volume_id=vol-12345
salt-cloud -f show_volume ec2 volume_id=vol-12345

Detaching Volumes

An existing volume may be detached from an instance.

salt-cloud -a detach_volume myinstance volume_id=vol-12345

Deleting Volumes

A volume that is not attached to an instance may be deleted.

salt-cloud -f delete_volume ec2 volume_id=vol-12345

Managing Key Pairs on EC2

The EC2 driver has the ability to manage key pairs.

Creating a Key Pair

A key pair is required in order to create an instance. When creating a key pair
with this function, the return data will contain a copy of the private key.
This private key is not stored by Amazon, and will not be obtainable past this
point, and should be stored immediately.

salt-cloud -f create_keypair ec2 keyname=mykeypair

Show a Key Pair

This function will show the details related to a key pair, not including the
private key itself (which is not stored by Amazon).

salt-cloud -f delete_keypair ec2 keyname=mykeypair

Delete a Key Pair

This function removes the key pair from Amazon.

salt-cloud -f delete_keypair ec2 keyname=mykeypair

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/action.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Cloud Actions

Once a VM has been created, there are a number of actions that can be performed
on it. The “reboot” action can be used across all providers, but all other
actions are specific to the cloud provider. In order to perform an action, you
may specify it from the command line, including the name(s) of the VM to
perform the action on:

$ salt-cloud -a reboot vm_name
$ salt-cloud -a reboot vm1 vm2 vm2

Or you may specify a map which includes all VMs to perform the action on:

$ salt-cloud -a reboot -m /path/to/mapfile

The following is a list of actions currently supported by salt-cloud:

all providers:
 - reboot
aws:
 - start
 - stop
joyent:
 - stop

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/aws.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Getting Started With AWS EC2

Amazon EC2 is a very widely used public cloud platform and one of the core
platforms Salt Cloud has been built to support.

Previously, the suggested provider for AWS EC2 was the aws provider. This has
been deprecated in favor of the ec2 provider. Configuration using the old
aws provider will still function, but that driver is no longer in active
development.

Set up the cloud config at /etc/salt/cloud:

Note: This example is for /etc/salt/cloud

providers:
 my-ec2-southeast-public-ips:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Set up grains information, which will be common for all nodes
 # using this provider
 grains:
 node_type: broker
 release: 1.0.1

 # Specify whether to use public or private IP for deploy script.
 #
 # Valid options are:
 # private_ips - The salt-master is also hosted with EC2
 # public_ips - The salt-master is hosted outside of EC2
 #
 ssh_interface: public_ips

 # Set the EC2 access credentials (see below)
 #
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'

 # Make sure this key is owned by root with permissions 0400.
 #
 private_key: /etc/salt/my_test_key.pem
 keyname: my_test_key
 securitygroup: default

 # Optionally configure default region
 #
 location: ap-southeast-1
 availability_zone: ap-southeast-1b

 # Configure which user to use to run the deploy script. This setting is
 # dependent upon the AMI that is used to deploy. It is usually safer to
 # configure this individually in a profile, than globally. Typical users
 # are:
 #
 # Amazon Linux -> ec2-user
 # RHEL -> ec2-user
 # CentOS -> ec2-user
 # Ubuntu -> ubuntu
 #
 ssh_username: ec2-user

 # Optionally add an IAM profile
 iam_profile: 'arn:aws:iam::123456789012:instance-profile/ExampleInstanceProfile'

 provider: ec2

 my-ec2-southeast-private-ips:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Specify whether to use public or private IP for deploy script.
 #
 # Valid options are:
 # private_ips - The salt-master is also hosted with EC2
 # public_ips - The salt-master is hosted outside of EC2
 #
 ssh_interface: private_ips

 # Set the EC2 access credentials (see below)
 #
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'

 # Make sure this key is owned by root with permissions 0400.
 #
 private_key: /etc/salt/my_test_key.pem
 keyname: my_test_key
 securitygroup: default

 # Optionally configure default region
 #
 location: ap-southeast-1
 availability_zone: ap-southeast-1b

 # Configure which user to use to run the deploy script. This setting is
 # dependent upon the AMI that is used to deploy. It is usually safer to
 # configure this individually in a profile, than globally. Typical users
 # are:
 #
 # Amazon Linux -> ec2-user
 # RHEL -> ec2-user
 # CentOS -> ec2-user
 # Ubuntu -> ubuntu
 #
 ssh_username: ec2-user

 # Optionally add an IAM profile
 iam_profile: 'my other profile name'

 provider: ec2

Access Credentials

The id and key settings may be found in the Security Credentials area
of the AWS Account page:

https://portal.aws.amazon.com/gp/aws/securityCredentials

Both are located in the Access Credentials area of the page, under the Access
Keys tab. The id setting is labeled Access Key ID, and the key setting
is labeled Secret Access Key.

Key Pairs

In order to create an instance with Salt installed and configured, a key pair
will need to be created. This can be done in the EC2 Management Console, in the
Key Pairs area. These key pairs are unique to a specific region. Keys in the
us-east-1 region can be configured at:

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=KeyPairs

Keys in the us-west-1 region can be configured at

https://console.aws.amazon.com/ec2/home?region=us-west-1#s=KeyPairs

...and so on. When creating a key pair, the browser will prompt to download a
pem file. This file must be placed in a directory accessable by Salt Cloud,
with permissions set to either 0400 or 0600.

Security Groups

An instance on EC2 needs to belong to a security group. Like key pairs, these
are unique to a specific region. These are also configured in the EC2
Management Console. Security groups for the us-east-1 region can be configured
at:

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups

...and so on.

A security group defines firewall rules which an instance will adhere to. If
the salt-master is configured outside of EC2, the security group must open the
SSH port (usually port 22) in order for Salt Cloud to install Salt.

IAM Profile

Amazon EC2 instances support the concept of an instance profile [http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html], which
is a logical container for the IAM role. At the time that you launch an EC2
instance, you can associate the instance with an instance profile, which in
turn corresponds to the IAM role. Any software that runs on the EC2 instance
is able to access AWS using the permissions associated with the IAM role.

Scaffolding the profile is a 2 steps configurations:

		Configure an IAM Role from the IAM Management Console [https://console.aws.amazon.com/iam/home?#roles].

		Attach this role to a new profile. It can be done with the AWS CLI [http://docs.aws.amazon.com/cli/latest/index.html]:

> aws iam create-instance-profile --instance-profile-name PROFILE_NAME
> aws iam add-role-to-instance-profile --instance-profile-name PROFILE_NAME --role-name ROLE_NAME

Once the profile is created, you can use the PROFILE_NAME to configure
your cloud profiles.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_ec2_private:
 provider: my-ec2-southeast-private-ips
 image: ami-e565ba8c
 size: Micro Instance
 ssh_username: ec2-user

base_ec2_public:
 provider: my-ec2-southeast-public-ips
 image: ami-e565ba8c
 size: Micro Instance
 ssh_username: ec2-user

base_ec2_db:
 provider: my-ec2-southeast-public-ips
 image: ami-e565ba8c
 size: m1.xlarge
 ssh_username: ec2-user
 volumes:
 - { size: 10, device: /dev/sdf }
 - { size: 10, device: /dev/sdg, type: io1, iops: 1000 }
 - { size: 10, device: /dev/sdh, type: io1, iops: 1000 }

The profile can be realized now with a salt command:

salt-cloud -p base_ec2 ami.example.com
salt-cloud -p base_ec2_public ami.example.com
salt-cloud -p base_ec2_private ami.example.com

This will create an instance named ami.example.com in EC2. The minion that
is installed on this instance will have an id of ami.example.com. If
the command was executed on the salt-master, its Salt key will automatically be
signed on the master.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt 'ami.example.com' test.ping

Required Settings

The following settings are always required for EC2:

Set the EC2 login data
my-ec2-config:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: ec2

Optional Settings

EC2 allows a location to be set for servers to be deployed in. Availability
zones exist inside regions, and may be added to increase specificity.

my-ec2-config:
 # Optionally configure default region
 location: ap-southeast-1
 availability_zone: ap-southeast-1b

EC2 instances can have a public or private IP, or both. When an instance is
deployed, Salt Cloud needs to log into it via SSH to run the deploy script.
By default, the public IP will be used for this. If the salt-cloud command is
run from another EC2 instance, the private IP should be used.

my-ec2-config:
 # Specify whether to use public or private IP for deploy script
 # private_ips or public_ips
 ssh_interface: public_ips

Many EC2 instances do not allow remote access to the root user by default.
Instead, another user must be used to run the deploy script using sudo. Some
common usernames include ec2-user (for Amazon Linux), ubuntu (for Ubuntu
instances), admin (official Debian) and bitnami (for images provided by
Bitnami).

my-ec2-config:
 # Configure which user to use to run the deploy script
 ssh_username: ec2-user

Multiple usernames can be provided, in which case Salt Cloud will attempt to
guess the correct username. This is mostly useful in the main configuration
file:

my-ec2-config:
 ssh_username:
 - ec2-user
 - ubuntu
 - admin
 - bitnami

Multiple security groups can also be specified in the same fashion:

my-ec2-config:
 securitygroup:
 - default
 - extra

Block device mappings enable you to specify additional EBS volumes or instance
store volumes when the instance is launched. This setting is also available on
each cloud profile. Note that the number of instance stores varies by instance type.
If more mappings are provided than are supported by the instance type, mappings will be
created in the order provided and additional mappings will be ignored. Consult the
AWS documentation [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html] for a listing of the available instance stores, device names, and mount points.

my-ec2-config:
 block_device_mappings:
 - DeviceName: /dev/sdb
 VirtualName: ephemeral0
 - DeviceName: /dev/sdc
 VirtualName: ephemeral1

You can also use block device mappings to change the size of the root device at the
provisioing time. For example, assuming the root device is ‘/dev/sda’, you can set
its size to 100G by using the following configuration.

my-ec2-config:
 block_device_mappings:
 - DeviceName: /dev/sda
 Ebs.VolumeSize: 100

Tags can be set once an instance has been launched.

Modify EC2 Tags

One of the features of EC2 is the ability to tag resources. In fact, under the
hood, the names given to EC2 instances by salt-cloud are actually just stored
as a tag called Name. Salt Cloud has the ability to manage these tags:

salt-cloud -a get_tags mymachine
salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'
salt-cloud -a del_tags mymachine tag1,tag2,tag3

Rename EC2 Instances

As mentioned above, EC2 instances are named via a tag. However, renaming an
instance by renaming its tag will cause the salt keys to mismatch. A rename
function exists which renames both the instance, and the salt keys.

salt-cloud -a rename mymachine newname=yourmachine

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific
instance. An instance with this protection enabled cannot be destroyed.

salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Rename on Destroy

When instances on EC2 are destroyed, there will be a lag between the time that
the action is sent, and the time that Amazon cleans up the instance. During
this time, the instance still retails a Name tag, which will cause a collision
if the creation of an instance with the same name is attempted before the
cleanup occurs. In order to avoid such collisions, Salt Cloud can be configured
to rename instances when they are destroyed. The new name will look something
like:

myinstance-DEL20f5b8ad4eb64ed88f2c428df80a1a0c

In order to enable this, add rename_on_destroy line to the main
configuration file:

my-ec2-config:
 rename_on_destroy: True

EC2 Images

The following are lists of available AMI images, generally sorted by OS. These
lists are on 3rd-party websites, are not managed by Salt Stack in any way. They
are provided here as a reference for those who are interested, and contain no
warranty (express or implied) from anyone affiliated with Salt Stack. Most of
them have never been used, much less tested, by the Salt Stack team.

		Arch Linux [https://wiki.archlinux.org/index.php/Arch_Linux_AMIs_for_Amazon_Web_Services]

		FreeBSD [http://www.daemonology.net/freebsd-on-ec2/]

		Fedora [https://fedoraproject.org/wiki/Cloud_images]

		CentOS [http://wiki.centos.org/Cloud/AWS]

		Ubuntu [http://cloud-images.ubuntu.com/locator/ec2/]

		Debian [http://wiki.debian.org/Cloud/AmazonEC2Image]

		Gentoo [https://aws.amazon.com/amis?platform=Gentoo&selection=platform]

		OmniOS [http://omnios.omniti.com/wiki.php/Installation#IntheCloud]

		All Images on Amazon [https://aws.amazon.com/amis]

show_image

This is a function that describes an AMI on EC2. This will give insight as to
the defaults that will be applied to an instance using a particular AMI.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

show_instance

This action is a thin wrapper around –full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

del_root_vol_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for
the EBS root volumes for an instance. Many AMIs contain ‘false’ as a default,
resulting in orphaned volumes in the EC2 account, which may unknowingly be
charged to the account. This setting can be added to the profile or map file
for an instance.

If set, this setting will apply to the root EBS volume

del_root_vol_on_destroy: True

This can also be set as a cloud provider setting in the EC2 cloud
configuration:

my-ec2-config:
 del_root_vol_on_destroy: True

del_all_vols_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for
the not-root EBS volumes for an instance. Many AMIs contain ‘false’ as a
default, resulting in orphaned volumes in the EC2 account, which may
unknowingly be charged to the account. This setting can be added to the profile
or map file for an instance.

If set, this setting will apply to any (non-root) volumes that were created
by salt-cloud using the ‘volumes’ setting.

The volumes will not be deleted under the following conditions
* If a volume is detached before terminating the instance
* If a volume is created without this setting and attached to the instance

del_all_vols_on_destroy: True

This can also be set as a cloud provider setting in the EC2 cloud
configuration:

my-ec2-config:
 del_all_vols_on_destroy: True

The setting for this may be changed on all volumes of an existing instance
using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance
salt-cloud -a keepvol_on_destroy myinstance
salt-cloud -a show_delvol_on_destroy myinstance

The setting for this may be changed on a volume on an existing instance
using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a delvol_on_destroy myinstance volume_id=vol-1a2b3c4d
salt-cloud -a keepvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a keepvol_on_destroy myinstance volume_id=vol-1a2b3c4d
salt-cloud -a show_delvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a show_delvol_on_destroy myinstance volume_id=vol-1a2b3c4d

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific
instance. An instance with this protection enabled cannot be destroyed. The EC2
driver adds a show_term_protect action to the regular EC2 functionality.

salt-cloud -a show_term_protect mymachine
salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Alternate Endpoint

Normally, EC2 endpoints are build using the region and the service_url. The
resulting endpoint would follow this pattern:

ec2.<region>.<service_url>

This results in an endpoint that looks like:

ec2.us-east-1.amazonaws.com

There are other projects that support an EC2 compatibility layer, which this
scheme does not account for. This can be overridden by specifying the endpoint
directly in the main cloud configuration file:

my-ec2-config:
 endpoint: myendpoint.example.com:1138/services/Cloud

Volume Management

The EC2 driver has several functions and actions for management of EBS volumes.

Creating Volumes

A volume may be created, independent of an instance. A zone must be specified.
A size or a snapshot may be specified (in GiB). If neither is given, a default
size of 10 GiB will be used. If a snapshot is given, the size of the snapshot
will be used.

salt-cloud -f create_volume ec2 zone=us-east-1b
salt-cloud -f create_volume ec2 zone=us-east-1b size=10
salt-cloud -f create_volume ec2 zone=us-east-1b snapshot=snap12345678
salt-cloud -f create_volume ec2 size=10 type=standard
salt-cloud -f create_volume ec2 size=10 type=io1 iops=1000

Attaching Volumes

Unattached volumes may be attached to an instance. The following values are
required; name or instance_id, volume_id and device.

salt-cloud -a attach_volume myinstance volume_id=vol-12345 device=/dev/sdb1

Show a Volume

The details about an existing volume may be retrieved.

salt-cloud -a show_volume myinstance volume_id=vol-12345
salt-cloud -f show_volume ec2 volume_id=vol-12345

Detaching Volumes

An existing volume may be detached from an instance.

salt-cloud -a detach_volume myinstance volume_id=vol-12345

Deleting Volumes

A volume that is not attached to an instance may be deleted.

salt-cloud -f delete_volume ec2 volume_id=vol-12345

Managing Key Pairs

The EC2 driver has the ability to manage key pairs.

Creating a Key Pair

A key pair is required in order to create an instance. When creating a key pair
with this function, the return data will contain a copy of the private key.
This private key is not stored by Amazon, and will not be obtainable past this
point, and should be stored immediately.

salt-cloud -f create_keypair ec2 keyname=mykeypair

Show a Key Pair

This function will show the details related to a key pair, not including the
private key itself (which is not stored by Amazon).

salt-cloud -f show_keypair ec2 keyname=mykeypair

Delete a Key Pair

This function removes the key pair from Amazon.

salt-cloud -f delete_keypair ec2 keyname=mykeypair

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/features.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Feature Matrix

A number of features are available in most cloud providers, but not all are
available everywhere. This may be because the feature isn’t supported by the
cloud provider itself, or it may only be that the feature has not yet been
added to Salt Cloud. In a handful of cases, it is because the feature does not
make sense for a particular cloud provider (Saltify, for instance).

This matrix shows which features are available in which cloud providers, as far
as Salt Cloud is concerned. This is not a comprehensive list of all features
available in all cloud providers, and shoult not be used to make business
decisions concerning choosing a cloud provider. In most cases, adding support
for a feature to Salt Cloud requires only a little effort.

Legacy Drivers

Both AWS and Rackspace are listed as “Legacy”. This is because those drivers
have been replaced by other drivers, which are generally the prerferred method
for working with those providers.

The EC2 driver should be used instead of the AWS driver, when possible. The
OpenStack driver should be used instead of the Rackspace driver, unless the user
is dealing with instances in “the old cloud” in Rackspace.

Note for Developers

When adding new features to a particular cloud provider, please make sure to
add the feature to this table. Additionally, if you notice a feature that is not
properly listed here, pull requests to fix them is appreciated.

Standard Features

These are features that are available for almost every provider.

		
		AWS
(Legacy)
		CloudStack
		Digital
Ocean
		EC2
		GoGrid
		IBM
SCE
		JoyEnt
		Linode
		OpenStack
		Parallels
		Rackspace
(Legacy)
		Saltify
		Softlayer
		Softlayer
Hardware

		Query
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

		Full Query
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

		Selective Query
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

		List Sizes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

		List Images
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

		List Locations
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

		create
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes

		destroy
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		Yes
		
		Yes
		Yes

Actions

These are features that are performed on a specific instance, and require an
instance name to be passed in. For example:

salt-cloud -a attach_volume ami.example.com

		Actions
		AWS
(Legacy)
		CloudStack
		Digital
Ocean
		EC2
		GoGrid
		IBM
SCE
		JoyEnt
		Linode
		OpenStack
		Parallels
		Rackspace
(Legacy)
		Saltify
		Softlayer
		Softlayer
Hardware

		attach_volume
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		create_attach_volumes
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		del_tags
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		delvol_on_destroy
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		detach_volume
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		disable_term_protect
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		enable_term_protect
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		get_tags
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		keepvol_on_destroy
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		list_keypairs
		
		
		Yes
		
		
		
		
		
		
		
		
		
		
		

		rename
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		set_tags
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		show_delvol_on_destroy
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		show_instance
		
		
		Yes
		Yes
		
		
		
		
		
		Yes
		
		
		Yes
		Yes

		show_term_protect
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		start
		Yes
		
		
		Yes
		
		
		Yes
		
		
		Yes
		
		
		
		

		stop
		Yes
		
		
		Yes
		
		
		Yes
		
		
		Yes
		
		
		
		

		take_action
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

Functions

These are features that are performed against a specific cloud provider, and
require the name of the provider to be passed in. For example:

salt-cloud -f list_images my_digitalocean

		Functions
		AWS
(Legacy)
		CloudStack
		Digital
Ocean
		EC2
		GoGrid
		IBM
SCE
		JoyEnt
		Linode
		OpenStack
		Parallels
		Rackspace
(Legacy)
		Saltify
		Softlayer
		Softlayer
Hardware

		block_device_mappings
		Yes
		
		
		
		
		
		
		
		
		
		
		
		
		

		create_keypair
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		create_volume
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		delete_key
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		delete_keypair
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		delete_volume
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		get_image
		
		
		Yes
		
		
		
		Yes
		
		
		Yes
		
		
		
		

		get_ip
		
		Yes
		
		
		
		
		
		
		
		
		
		
		
		

		get_key
		
		Yes
		
		
		
		
		
		
		
		
		
		
		
		

		get_keyid
		
		
		Yes
		
		
		
		
		
		
		
		
		
		
		

		get_keypair
		
		Yes
		
		
		
		
		
		
		
		
		
		
		
		

		get_networkid
		
		Yes
		
		
		
		
		
		
		
		
		
		
		
		

		get_node
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		get_password
		
		Yes
		
		
		
		
		
		
		
		
		
		
		
		

		get_size
		
		
		Yes
		
		
		
		Yes
		
		
		
		
		
		
		

		get_spot_config
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		get_subnetid
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		iam_profile
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		import_key
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		key_list
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		keyname
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		list_availability_zones
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		list_custom_images
		
		
		
		
		
		
		
		
		
		
		
		
		Yes
		

		list_keys
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		list_vlans
		
		
		
		
		
		
		
		
		
		
		
		
		Yes
		Yes

		rackconnect
		
		
		
		
		
		
		
		
		Yes
		
		
		
		
		

		reboot
		
		
		
		Yes
		
		
		Yes
		
		
		
		
		
		
		

		reformat_node
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		securitygroup
		Yes
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		securitygroupid
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

		show_image
		
		
		
		Yes
		
		
		
		
		
		Yes
		
		
		
		

		show_key
		
		
		
		
		
		
		Yes
		
		
		
		
		
		
		

		show_keypair
		
		
		Yes
		Yes
		
		
		
		
		
		
		
		
		
		

		show_volume
		
		
		
		Yes
		
		
		
		
		
		
		
		
		
		

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/config.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Core Configuration

A number of core configuration options and some options that are global to the
VM profiles can be set in the cloud configuration file. By default this file is
located at /etc/salt/cloud.

Minion Configuration

The default minion configuration is set up in this file. This is where the
minions that are created derive their configuration.

minion:
 master: saltmaster.example.com

This is the location in particular to specify the location of the salt master.

New Cloud Configuration Syntax

The data specific to interacting with public clouds is set up here.

ATTENTION: Since version 0.8.7 a new cloud provider configuration syntax
was implemented. It will allow for multiple configurations of the same cloud
provider where only minor details can change, for example, the region for an
EC2 instance. While the old format is still supported and automatically
migrated every time salt-cloud configuration is parsed, a choice was made to
warn the user or even exit with an error if both formats are mixed.

Migrating Configurations

If you wish to migrate, there are several alternatives. Since the old syntax
was mainly done on the main cloud configuration file, see the next before and
after migration example.

		Before migration in /etc/salt/cloud:

AWS.id: HJGRYCILJLKJYG
AWS.key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
AWS.keyname: test
AWS.securitygroup: quick-start
AWS.private_key: /root/test.pem

		After migration in /etc/salt/cloud:

providers:
 my-aws-migrated-config:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: aws

Notice that it’s not longer required to name a cloud provider’s configuration
after it’s provider, it can be an alias, though, an additional configuration
key is added, provider. This allows for multiple configuration for the same
cloud provider to coexist.

While moving towards an improved and extensible configuration handling
regarding the cloud providers, --providers-config, which defaults to
/etc/salt/cloud.providers, was added to the cli parser. It allows for the
cloud providers configuration to be provided in a different file, and/or even
any matching file on a sub-directory, cloud.providers.d/*.conf which is
relative to the providers configuration file(with the above configuration file
as an example, /etc/salt/cloud.providers.d/*.conf).

So, using the example configuration above, after migration in
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/aws-migrated.conf:

my-aws-migrated-config:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: aws

Notice that on this last migrated example, it no longer includes the
providers starting key.

While migrating the cloud providers configuration, if the provider alias(from
the above example my-aws-migrated-config) changes from what you had(from
the above example aws), you will also need to change the provider
configuration key in the defined profiles.

		From:

rhel_aws:
 provider: aws
 image: ami-e565ba8c
 size: Micro Instance

		To:

rhel_aws:
 provider: my-aws-migrated-config
 image: ami-e565ba8c
 size: Micro Instance

This new configuration syntax even allows you to have multiple cloud
configurations under the same alias, for example:

production-config:
 - id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem

 - user: example_user
 apikey: 123984bjjas87034
 provider: rackspace

Notice the dash and indentation on the above example.

Having multiple entries for a configuration alias also makes the provider
key on any defined profile to change, see the example:

rhel_aws_dev:
 provider: production-config:aws
 image: ami-e565ba8c
 size: Micro Instance

rhel_aws_prod:
 provider: production-config:aws
 image: ami-e565ba8c
 size: High-CPU Extra Large Instance

database_prod:
 provider: production-config:rackspace
 image: Ubuntu 12.04 LTS
 size: 256 server

Notice that because of the multiple entries, one has to be explicit about the
provider alias and name, from the above example, production-config:aws.

This new syntax also changes the interaction with the salt-cloud binary.
--list-location, --list-images and --list-sizes which needs a cloud
provider as an argument. Since 0.8.7 the argument used should be the configured
cloud provider alias. If the provider alias only as a single entry, use
<provider-alias>. If it has multiple entries,
<provider-alias>:<provider-name> should be used.

Cloud Configurations

Rackspace

Rackspace cloud requires two configuration options:

		Using the old format:

RACKSPACE.user: example_user
RACKSPACE.apikey: 123984bjjas87034

		Using the new configuration format:

my-rackspace-config:
 user: example_user
 apikey: 123984bjjas87034
 provider: rackspace

NOTE: With the new providers configuration syntax you would have provider:
rackspace-config instead of provider: rackspace on a profile
configuration.

Amazon AWS

A number of configuration options are required for Amazon AWS:

		Using the old format:

AWS.id: HJGRYCILJLKJYG
AWS.key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
AWS.keyname: test
AWS.securitygroup: quick-start
AWS.private_key: /root/test.pem

		Using the new configuration format:

my-aws-quick-start:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: aws

my-aws-default:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: default
 private_key: /root/test.pem
 provider: aws

NOTE: With the new providers configuration syntax you would have
provider: my-aws-quick-start or provider: my-aws-default instead of
provider: aws on a profile configuration.

Linode

Linode requires a single API key, but the default root password also needs to
be set:

		Using the old format:

LINODE.apikey: asldkgfakl;sdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf
LINODE.password: F00barbaz

		Using the new configuration format:

my-linode-config:
 apikey: asldkgfakl;sdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf
 password: F00barbaz
 provider: linode

NOTE: With the new providers configuration syntax you would have
provider: my-linode-config instead of provider: linode on a profile
configuration.

The password needs to be 8 characters and contain lowercase, uppercase and
numbers.

Joyent Cloud

The Joyent cloud requires three configuration parameters. The user name and
password that are used to log into the Joyent system, and the location of the
private ssh key associated with the Joyent account. The ssh key is needed to
send the provisioning commands up to the freshly created virtual machine,

		Using the old format:

JOYENT.user: fred
JOYENT.password: saltybacon
JOYENT.private_key: /root/joyent.pem

		Using the new configuration format:

my-joyent-config:
 user: fred
 password: saltybacon
 private_key: /root/joyent.pem
 provider: joyent

NOTE: With the new providers configuration syntax you would have
provider: my-joyent-config instead of provider: joyent on a profile
configuration.

GoGrid

To use Salt Cloud with GoGrid log into the GoGrid web interface and create an
API key. Do this by clicking on “My Account” and then going to the API Keys
tab.

The GOGRID.apikey and the GOGRID.sharedsecret configuration parameters need to
be set in the configuration file to enable interfacing with GoGrid:

		Using the old format:

GOGRID.apikey: asdff7896asdh789
GOGRID.sharedsecret: saltybacon

		Using the new configuration format:

my-gogrid-config:
 apikey: asdff7896asdh789
 sharedsecret: saltybacon
 provider: gogrid

NOTE: With the new providers configuration syntax you would have
provider: my-gogrid-config instead of provider: gogrid on a profile
configuration.

OpenStack

OpenStack configuration differs between providers, and at the moment several
options need to be specified. This module has been officially tested against
the HP and the Rackspace implementations, and some examples are provided for
both.

		Using the old format:

For HP
OPENSTACK.identity_url: 'https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/'
OPENSTACK.compute_name: Compute
OPENSTACK.compute_region: 'az-1.region-a.geo-1'
OPENSTACK.tenant: myuser-tenant1
OPENSTACK.user: myuser
OPENSTACK.ssh_key_name: mykey
OPENSTACK.ssh_key_file: '/etc/salt/hpcloud/mykey.pem'
OPENSTACK.password: mypass

For Rackspace
OPENSTACK.identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
OPENSTACK.compute_name: cloudServersOpenStack
OPENSTACK.protocol: ipv4
OPENSTACK.compute_region: DFW
OPENSTACK.protocol: ipv4
OPENSTACK.user: myuser
OPENSTACK.tenant: 5555555
OPENSTACK.password: mypass

If you have an API key for your provider, it may be specified instead of a
password:

OPENSTACK.apikey: 901d3f579h23c8v73q9

		Using the new configuration format:

For HP
my-openstack-hp-config:
 identity_url:
 'https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/'
 compute_name: Compute
 compute_region: 'az-1.region-a.geo-1'
 tenant: myuser-tenant1
 user: myuser
 ssh_key_name: mykey
 ssh_key_file: '/etc/salt/hpcloud/mykey.pem'
 password: mypass
 provider: openstack

For Rackspace
my-openstack-rackspace-config:
 identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
 compute_name: cloudServersOpenStack
 protocol: ipv4
 compute_region: DFW
 protocol: ipv4
 user: myuser
 tenant: 5555555
 password: mypass
 provider: openstack

If you have an API key for your provider, it may be specified instead of a
password:

my-openstack-hp-config:
 apikey: 901d3f579h23c8v73q9

my-openstack-rackspace-config:
 apikey: 901d3f579h23c8v73q9

NOTE: With the new providers configuration syntax you would have
provider: my-openstack-hp-config or provider:
my-openstack-rackspace-config instead of provider: openstack on a profile
configuration.

You will certainly need to configure the user, tenant and either
password or apikey.

If your OpenStack instances only have private IP addresses and a CIDR range of
private addresses are not reachable from the salt-master, you may set your
preference to have Salt ignore it. Using the old could configurations syntax:

OPENSTACK.ignore_cidr: 192.168.0.0/16

Using the new syntax:

my-openstack-config:
 ignore_cidr: 192.168.0.0/16

For in-house Openstack Essex installation, libcloud needs the service_type :

my-openstack-config:
 identity_url: 'http://control.openstack.example.org:5000/v2.0/'
 compute_name : Compute Service
 service_type : compute

Digital Ocean

Using Salt for Digital Ocean requires a client_key and an api_key. These can be
found in the Digital Ocean web interface, in the “My Settings” section, under
the API Access tab.

		Using the old format:

DIGITAL_OCEAN.client_key: wFGEwgregeqw3435gDger
DIGITAL_OCEAN.api_key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg

		Using the new configuration format:

my-digitalocean-config:
 client_key: wFGEwgregeqw3435gDger
 api_key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg
 provider: digital_ocean
 location: New York 1

NOTE: With the new providers configuration syntax you would have
provider: my-digitalocean-config instead of provider: digital_ocean on a
profile configuration.

Parallels

Using Salt with Parallels requires a user, password and url. These can be
obtained from your cloud provider.

		Using the old format:

PARALLELS.user: myuser
PARALLELS.password: xyzzy
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

		Using the new configuration format:

my-parallels-config:
 user: myuser
 password: xyzzy
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 provider: parallels

NOTE: With the new providers configuration syntax you would have
provider: my-parallels-config instead of provider: parallels on a
profile configuration.

IBM SmartCloud Enterprise

In addition to a username and password, the IBM SCE module requires an SSH key,
which is currently configured inside IBM’s web interface. A location is also
required to create instances, but not to query their cloud. This is important,
because you need to use salt-cloud –list-locations (with the other options
already set) in order to find the name of the location that you want to use.

		Using the old format:

IBMSCE.user: myuser@mycorp.com
IBMSCE.password: mypass
IBMSCE.ssh_key_name: mykey
IBMSCE.ssh_key_file: '/etc/salt/ibm/mykey.pem'
IBMSCE.location: Raleigh

		Using the new configuration format:

my-ibmsce-config:
 user: myuser@mycorp.com
 password: mypass
 ssh_key_name: mykey
 ssh_key_file: '/etc/salt/ibm/mykey.pem'
 location: Raleigh
 provider: ibmsce

NOTE: With the new providers configuration syntax you would have
provider: my-imbsce-config instead of provider: ibmsce on a profile
configuration.

Saltify

The Saltify driver is a new, experimental driver for installing Salt on
existing machines (virtual or bare metal). Because it does not use an actual
cloud provider, it needs no configuration in the main cloud config file.
However, it does still require a profile to be set up, and is most useful when
used inside a map file. The key parameters to be set are ssh_host,
ssh_username and either ssh_keyfile or ssh_password. These may all
be set in either the profile or the map. An example configuration might use the
following in cloud.profiles:

make_salty:
 provider: saltify

And in the map file:

make_salty:
 - myinstance:
 ssh_host: 54.262.11.38
 ssh_username: ubuntu
 ssh_keyfile: '/etc/salt/mysshkey.pem'
 sudo: True

Extending Profiles and Cloud Providers Configuration

As of 0.8.7, the option to extend both the profiles and cloud providers
configuration and avoid duplication was added. The extends feature works on the
current profiles configuration, but, regarding the cloud providers
configuration, only works in the new syntax and respective configuration
files, ie, /etc/salt/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf.

Extending Profiles

Some example usage on how to use extends with profiles. Consider
/etc/salt/salt/cloud.profiles containing:

development-instances:
 provider: my-ec2-config
 size: Micro Instance
 ssh_username: ec2_user
 securitygroup:
 - default
 deploy: False

Amazon-Linux-AMI-2012.09-64bit:
 image: ami-54cf5c3d
 extends: development-instances

Fedora-17:
 image: ami-08d97e61
 extends: development-instances

CentOS-5:
 provider: my-aws-config
 image: ami-09b61d60
 extends: development-instances

The above configuration, once parsed would generate the following profiles
data:

[{'deploy': False,
 'image': 'ami-08d97e61',
 'profile': 'Fedora-17',
 'provider': 'my-ec2-config',
 'securitygroup': ['default'],
 'size': 'Micro Instance',
 'ssh_username': 'ec2_user'},
 {'deploy': False,
 'image': 'ami-09b61d60',
 'profile': 'CentOS-5',
 'provider': 'my-aws-config',
 'securitygroup': ['default'],
 'size': 'Micro Instance',
 'ssh_username': 'ec2_user'},
 {'deploy': False,
 'image': 'ami-54cf5c3d',
 'profile': 'Amazon-Linux-AMI-2012.09-64bit',
 'provider': 'my-ec2-config',
 'securitygroup': ['default'],
 'size': 'Micro Instance',
 'ssh_username': 'ec2_user'},
 {'deploy': False,
 'profile': 'development-instances',
 'provider': 'my-ec2-config',
 'securitygroup': ['default'],
 'size': 'Micro Instance',
 'ssh_username': 'ec2_user'}]

Pretty cool right?

Extending Providers

Some example usage on how to use extends within the cloud providers
configuration. Consider /etc/salt/salt/cloud.providers containing:

my-develop-envs:
 - id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 location: ap-southeast-1
 availability_zone: ap-southeast-1b
 provider: aws

 - user: myuser@mycorp.com
 password: mypass
 ssh_key_name: mykey
 ssh_key_file: '/etc/salt/ibm/mykey.pem'
 location: Raleigh
 provider: ibmsce

my-productions-envs:
 - extends: my-develop-envs:ibmsce
 user: my-production-user@mycorp.com
 location: us-east-1
 availability_zone: us-east-1

The above configuration, once parsed would generate the following providers
data:

'providers': {
 'my-develop-envs': [
 {'availability_zone': 'ap-southeast-1b',
 'id': 'HJGRYCILJLKJYG',
 'key': 'kdjgfsgm;woormgl/aserigjksjdhasdfgn',
 'keyname': 'test',
 'location': 'ap-southeast-1',
 'private_key': '/root/test.pem',
 'provider': 'aws',
 'securitygroup': 'quick-start'
 },
 {'location': 'Raleigh',
 'password': 'mypass',
 'provider': 'ibmsce',
 'ssh_key_file': '/etc/salt/ibm/mykey.pem',
 'ssh_key_name': 'mykey',
 'user': 'myuser@mycorp.com'
 }
],
 'my-productions-envs': [
 {'availability_zone': 'us-east-1',
 'location': 'us-east-1',
 'password': 'mypass',
 'provider': 'ibmsce',
 'ssh_key_file': '/etc/salt/ibm/mykey.pem',
 'ssh_key_name': 'mykey',
 'user': 'my-production-user@mycorp.com'
 }
]
}

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/windows.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Spinning up Windows Minions

It is possible to use Salt Cloud to spin up Windows instances, and then install
Salt on them. This functionality is available on all cloud providers that are
supported by Salt Cloud. However, it may not necessarily be available on all
Windows images.

Requirements

Salt Cloud makes use of smbclient and winexe to set up the Windows Salt
Minion installer. smbclient may be part of either the samba package, or its
own smbclient package, depending on the distribution. winexe is less
commonly available in distribution-specific repositories. However, it is
currently being built for various distributions in 3rd party channels:

		RPMs at pbone.net [http://rpm.pbone.net/index.php3?stat=3&search=winexe]

		OpenSuse Build Service [http://software.opensuse.org/package/winexe]

Additionally, a copy of the Salt Minion Windows installer must be present on
the system on which Salt Cloud is running. This installer may be downloaded
from saltstack.com:

		SaltStack Download Area [http://saltstack.com/downloads/]

Firewall Settings

Because Salt Cloud makes use of smbclient and winexe, port 445 must be open
on the target image. This port is not generally open by default on a standard
Windows distribution, and care must be taken to use an image in which this port
is open, or the Windows firewall is disabled.

Configuration

Configuration is set as usual, with some extra configuration settings. The
location of the Windows installer on the machine that Salt Cloud is running on
must be specified. This may be done in any of the regular configuration files
(main, providers, profiles, maps). For example:

Setting the installer in /etc/salt/cloud.providers:

my-softlayer:
 provider: softlayer
 user: MYUSER1138
 apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'
 minion:
 master: saltmaster.example.com
 win_installer: /root/Salt-Minion-0.17.0-AMD64-Setup.exe
 win_username: Administrator
 win_password: letmein

The default Windows user is Administrator, and the default Windows password
is blank.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

contents.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud Table of Contents

		VM Profiles
		Multiple Configuration Files

		Larger Example

		Cloud Map File

		Writing Cloud Provider Modules

		OS Support for Cloud VMs
		Other Generic Deploy Scripts

		Post-Deploy Commands

		Skipping the Deploy Script

		Updating Salt Bootstrap

		Keeping /tmp/ Files

		Deploy Script Arguments

		Core Configuration
		Minion Configuration

		New Cloud Configuration Syntax
		Migrating Configurations

		Cloud Configurations
		Rackspace

		Amazon AWS

		Linode

		Joyent Cloud

		GoGrid

		OpenStack

		Digital Ocean

		Parallels

		IBM SmartCloud Enterprise

		Saltify

		Extending Profiles and Cloud Providers Configuration
		Extending Profiles

		Extending Providers

		Cloud Actions

		Cloud Functions

		Miscellaneous Salt Cloud Options
		Deploy Script Arguments

		Sync After Install

		Setting up New Salt Masters

		Delete SSH Keys

		Keeping /tmp/ Files

		Hide Output From Minion Install

		Connection Timeout
		wait_for_ip_timeout

		wait_for_ip_interval

		ssh_connect_timeout

		wait_for_passwd_timeout

		wait_for_fun_timeout

		wait_for_spot_timeout

		salt-cloud
		Synopsis

		Description

		Options

		Examples

		See also

		Release notes and upgrade instructions
		Salt Cloud 0.8.11 Release Notes
		Documentation

		Download

		Salt Cloud 0.8.10 Release Notes
		Documentation

		Download

		New Event System Code

		New SoftLayer Drivers

		Support for IOPS Volumes in EC2

		Windows (Minion) Support

		OpenStack Support for Userdata

		Salt Cloud 0.8.9 Release Notes
		Documentation

		Download

		New Cloudstack Driver

		Updated Joyent Support

		Mapping Independent Hierarchies

		Parallel Creation and Logging

		Internal Data Structure

		Data Presentation

		Salt Cloud 0.8.7 Release Notes
		Documentation

		Download

		Added Parallels Support

		Added Digital Ocean Support

		Updated Configuration Format

		Provider Aliases

		Extending Profiles

		Extending Providers

		Salt Cloud 0.8.6 Release Notes
		Documentation

		Download

		Updated libcloud

		Salt Outputter

		Experimental EC2 Driver

		AWS/EC2 Rename on Destroy

		New Action: show_instance

		Actions vs Functions

		New Function: show_image

		EC2: delvol_on_destroy

		EC2 Termination Protection

		EC2 Alternate Endpoint

		EC2 Volume Management

		Managing Key Pairs on EC2

		Salt Cloud 0.8.5 Release Notes
		Documentation

		Download

		Salt Bootstrap

		Updating Salt Bootstrap

		Modify AWS Tags

		Rename AWS Instances

		AWS Termination Protection

		Setting up New Salt Masters

		Keeping /tmp/ Files

		Deploy Script Arguments

		Remove Old SSH Keys

		Salt Cloud 0.8.4 Release Notes
		Documentation

		Download

		Salt Bootstrap

		Optional Script Option

		Other Generic Deploy Scripts

		Salt Cloud 0.8.3 Release Notes
		Documentation

		Download

		No Deploy

		Firing Events

		Start Actions

		Exception Handling

		Provider-Specific Actions

		Human-Readable States

		Various other Features and Stability Fixes

		Salt Cloud 0.8.2 Release Notes
		Documentation

		Download

		Select Query Option

		os vs script

		SmartOS Deploy Script

		OpenStack and IBM Modules

		OpenStack with Salt

		Salt Cloud Logging

		Salt Cloud 0.8.1 Release Notes
		Documentation

		Download

		Full Query Option

		Increased Map Functionality

		Multiple Security Groups in AWS

		Bug Fixes

		Salt Cloud 0.8.0 Release Notes
		Documentation

		Download

		Increased Formatting Options

		More Helpful Error Messages

		Specify Grains in Map Files

		AWS Improvements

		Ubuntu Fixes

		Salt Cloud 0.7.0 Release Notes
		Documentation

		Download

		New Cloud Provider Support

		List Available Resources

		Destroy!

		Salt Cloud 0.6.0 Release Notes
		Documentation

		Download

		Extensible With Cloud Modules

		Define VM Profiles

		Define Maps of Profiles

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.7.0.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.7.0 Release Notes

Salt Cloud marches forward with the 0.7.0 release. As is customary for Salt
Stack projects the 0.7.0 release is intended to be much more robust and
deliver a more complete core feature set. Salt Cloud 0.7.0 is just that.

With new tools to help look into what is available on cloud providers,
new additions to make cloud management more stateful and the addition of
more supported cloud platforms 0.7.0 has greatly enhanced the capabilities
of the overall Salt platform.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi or github:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.7.0.tar.gz

https://github.com/downloads/saltstack/salt-cloud/salt-cloud-0.7.0.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch, and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. Package availability will be announced on the salt mailing list.

New Cloud Provider Support

The following cloud providers are now supported:

		Amazon AWS

		http://aws.amazon.com/ec2/

		Rackspace Cloud

		http://www.rackspace.com/cloud/

		Linode

		http://www.linode.com/

		Joyent

		http://joyent.com/

		GoGrid

		http://www.gogrid.com/

List Available Resources

Setting up Salt Cloud requires knowlege of the available sizes and images on
cloud providers. Listing the available images and sizes can now be done with
the salt-cloud command:

[root@saltmaster]# salt-cloud --list-sizes linode
linode
 Linode 1024
 bandwidth: 400
 disk: 40960
 id: 3
 name: Linode 1024
 ram: 1024
 uuid: 56e6f495190cb2ed1a343f7159ad447cf27d906d
 Linode 12GB
 bandwidth: 2000
 disk: 491520
 id: 8
 name: Linode 12GB
 ram: 12288
 uuid: 3d1731ebefdbcb4c283957b43d45f89a01f67c5f
 Linode 1536
 bandwidth: 600
 disk: 61440
 id: 4
 name: Linode 1536
 ram: 1536
 uuid: f0f28628cc70c5f2656aa3f313588d8509ee3787
 Linode 16GB
 bandwidth: 2000
 disk: 655360
 id: 9
 name: Linode 16GB
 ram: 16384
 uuid: 208cc3c0a60c4eab6ed6861344fef0311c13ffd2
 Linode 2048
 bandwidth: 800
 disk: 81920
 id: 5
 name: Linode 2048
 ram: 2048
 uuid: 0c9ee69dc7ef7a4cdce71963f8d18e76c61dd57f
 Linode 20GB
 bandwidth: 2000
 disk: 819200
 id: 10
 name: Linode 20GB
 ram: 20480
 uuid: e0a7b61e3830a120eec94459c9fc34ef7c9e0e36
 Linode 4GB
 bandwidth: 1600
 disk: 163840
 id: 6
 name: Linode 4GB
 ram: 4096
 uuid: 09585e0f1d4ef4aad486cfa3d53f9d8960f575e7
 Linode 512
 bandwidth: 200
 disk: 20480
 id: 1
 name: Linode 512
 ram: 512
 uuid: 3497f7def3d6081e6f65ac6e577296bc6b810c05
 Linode 768
 bandwidth: 300
 disk: 30720
 id: 2
 name: Linode 768
 ram: 768
 uuid: da9f0dbc144aaa234aa5d555426863c8068a8c70
 Linode 8GB
 bandwidth: 2000
 disk: 327680
 id: 7
 name: Linode 8GB
 ram: 8192
 uuid: e08f8a57551297b9310545430c67667f59120606

Destroy!

Salt Cloud can now destroy cloud vms as easily as it can create them. The new
--destroy option can be passed to end the life of a vm:

$ salt-cloud -d web1

The map operation can now also destroy vms, the new hard option can be
passed which makes vm maps much more stateful. With the hard option the
vm maps are viewed as the absolute source of information for the state of
cloud resources, and any vm that is not specified in the map file will be
destroyed:

[root@saltmaster]# salt-cloud -m /etc/salt/cloud.map -H
The following virtual machines are set to be created:
 web1
 riak4
The following virtual machines are set to be destroyed:
 app7
 devtest4

Proceed? [N/y]

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.4.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.4 Release Notes

Welcome to 0.8.4! Aside from various bug fixes, the most important improvements
in this release are to the deploy scripts. Read on to see what’s happened.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.4.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

Salt Bootstrap

By far the biggest change to Salt Cloud is the inclusion of the salt-bootstrap
script, made possible by the genius of Alec Koumjian and Pedro Algarvio. From
this point on, each release of Salt Cloud will include the latest stable
version of bootstrap-salt-minion.sh in the deploy folder. This is a generic,
POSIX-compliant deployment script, which autodetects your OS, and installs
the latest version of Salt accordingly. For more information, see:

https://github.com/saltstack/salt-bootstrap

To use this deploy script explicitly, set the script option to
bootstrap-salt-minion in the profile for your VM. For instance:

aws-archlinux:
 provider: aws
 image: ami-0356da6a
 size: Micro Instance
 script: bootstrap-salt-minion
 ssh_username: root

For those of you still using “os” in your profiles, it should be noted that
this option was renamed to “script” in 0.8.2, and your configuration should
be updated accordingly.

Optional Script Option

As mentioned above, usage of the “os” argument has been deprecated in favor of
the “script” argument. However, “script” is now optional. If you do not
specify this option, salt-cloud will default to bootstrap-salt-minion for you.
If you do not want any deployment scripts run, you still have the following
options available to you.

From the command line, use the –no-deploy option:

salt-cloud --no-deploy -p myprofile mymachine

In the Salt Cloud configuration, set:

deploy: False

Or in the profile, set the script option to None:

script: None

Other Generic Deploy Scripts

If you want to be assured of always using the latest Salt Bootstrap script,
there are now a few generic templates available in the deploy directory of
your saltcloud source tree:

curl-bootstrap
curl-bootstrap-git
python-bootstrap
wget-bootstrap
wget-bootstrap-git

These are example scripts which were designed to be customized, adapted, and
refit to meet your needs. One important use of them is to pass options to
the salt-bootstrap script, such as updating to specific git tags.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

ref/cli/salt-cloud.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

salt-cloud

Provision virtual machines in the cloud with Salt

Synopsis

salt-cloud -m /etc/salt/cloud.map

salt-cloud -p PROFILE NAME

salt-cloud -p PROFILE NAME1 NAME2 NAME3 NAME4 NAME5 NAME6

Description

Salt Cloud is the system used to provision virtual machines on various public
clouds via a cleanly controlled profile and mapping system.

Options

		
-h, --help

		Print a usage message briefly summarizing these command-line options.

		
-p PROFILE, --profile=PROFILE

		Select a single profile to build the named cloud VMs from. The profile
must be defined in the specified profiles file.

		
-m MAP, --map=MAP

		Specify a map file to use. If used without any other options, this option
will ensure that all of the mapped VMs are created. If the named VM
already exists then it will be skipped.

		
-H, --hard

		When specifying a map file, the default behavior is to ensure that all of
the VMs specified in the map file are created. If the –hard option is
set, then any VMs that exist on configured cloud providers that are
not specified in the map file will be destroyed. Be advised that this can
be a destructive operation and should be used with care.

		
-d, --destroy

		Pass in the name(s) of VMs to destroy, salt-cloud will search the
configured cloud providers for the specified names and destroy the
VMs. Be advised that this is a destructive operation and should be used
with care. Can be used in conjunction with the -m option to specify a map
of VMs to be deleted.

		
-P, --parallel

		Normally when building many cloud VMs they are executed serially. The -P
option will run each cloud vm build in a separate process allowing for
large groups of VMs to be build at once.

Be advised that some cloud provider’s systems don’t seem to be well suited
for this influx of vm creation. When creating large groups of VMs watch the
cloud provider carefully.

		
-Q, --query

		Execute a query and print out information about all cloud VMs. Can be used
in conjunction with -m to display only information about the specified map.

		
-F, --full-query

		Execute a query and print out all available information about all cloud VMs.
Can be used in conjunction with -m to display only information about the
specified map.

		
-S, --select-query

		Execute a query and print out selected information about all cloud VMs.
Can be used in conjunction with -m to display only information about the
specified map.

		
--list-images

		Display a list of images available in configured cloud providers.
Pass the cloud provider that available images are desired on, aka
“linode”, or pass “all” to list images for all configured cloud providers.

		
--list-sizes

		Display a list of sizes available in configured cloud providers. Pass the
cloud provider that available sizes are desired on, aka “aws”, or pass
“all” to list sizes for all configured cloud providers

		
-C CLOUD_CONFIG, --cloud-config=CLOUD_CONFIG

		Specify an alternative location for the salt cloud configuration file.
Default location is /etc/salt/cloud.

		
-M MASTER_CONFIG, --master-config=MASTER_CONFIG

		Specify an alternative location for the salt master configuration file.
The salt master configuration file is used to determine how to handle the
minion RSA keys. Default location is /etc/salt/master.

		
-V VM_CONFIG, --profiles=VM_CONFIG, --vm_config=VM_CONFIG

		Specify an alternative location for the salt cloud profiles file.
Default location is /etc/salt/cloud.profiles.

		
--raw-out

		Print the output from the salt command in raw python
form, this is suitable for re-reading the output into
an executing python script with eval.

		
--text-out

		Print the output from the salt command in the same form the shell would.

		
--yaml-out

		Print the output from the salt command in yaml.

		
--json-out

		Print the output from the salt command in json.

		
--no-color

		Disable all colored output.

Examples

To create 4 VMs named web1, web2, db1 and db2 from specified profiles:

salt-cloud -p fedora_rackspace web1 web2 db1 db2

To read in a map file and create all VMs specified therein:

salt-cloud -m /path/to/cloud.map

To read in a map file and create all VMs specified therein in parallel:

salt-cloud -m /path/to/cloud.map -P

To delete any VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -d

To delete any VMs NOT specified in the map file:

salt-cloud -m /path/to/cloud.map -H

To display the status of all VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -Q

See also

salt-cloud(7)
salt(7)
salt-master(1)
salt-minion(1)

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.1.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.1 Release Notes

In a somewhat quicker timeline than usual, Salt Cloud 0.8.1 has been released!
While many of the updates in this release focus on stability, users of map
files and AWS also have some new features to look forward to.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi or github:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.1.tar.gz

https://github.com/downloads/saltstack/salt-cloud/salt-cloud-0.8.1.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch, and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. Package availability will be announced on the salt mailing list.

Full Query Option

The -Q or –query option only displays a small amount of information about
each virtual machine. This is to keep command-line reports small and
manageable. Now the -F or –full-query option can be used to display all
of the information about a VM that salt-cloud knows about. The amount of
information returned varies between providers, depending on the kinds of
functionality available through them.

Increased Map Functionality

Previously, map files were only used for creating VMs. Now they can also be
used to query and delete VMs. The -Q, -F and -d options can all be used in
conjunction with -m, to display map-specific data. If a VM that is specified
in the map does not exist, it will still show up under -Q and -F as “Absent”.
If a VM specified in the map does not exist when a -d is specified, it will
of course be ignored.

Multiple Security Groups in AWS

AWS allows for multiple security groups to be applied to any given VM, but
until this release, Salt Cloud only supported managing one. This update allows
a list of security groups to be specified. In the main configuration file, an
example of multiple security groups would look like:

AWS.securitygroup:
 - default
 - extra

In a profile, an example would be:

micro_amazon:
 provider: aws
 image: ami-e565ba8c
 size: Micro Instance
 os: RHEL6
 securitygroup:
 - default
 - extra

Bug Fixes

A number of bugs have been fixed in this release. Most of these were internal
fixes related to authentication and deployment across various providers. Bug
fixes in this release include:

Ubuntu users may notice that deploying an instance has become significantly
noisier. A change was made to make Ubuntu display information returned as
packages are installed, which is more aligned with how yum-based machines
already behaved. This also forced these VMs to deploy salt in a much more
reliable manner.

Requirements listed in requirements.txt are also pulled into setup.py, to make
it easy to use the easy_install tool.

Most cloud providers default to root as the initial user, but AWS typically
providers a different user (ec2-user, ubuntu, bitnami, etc). Deployment on
such images must be handled using sudo. Previously, sudo was used to issue
all deployment commands, but this failed on images where sudo was not installed
by default (such as FreeBSD). Now sudo will only be used with non-root logins.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.0.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.0 Release Notes

Salt Cloud has reached another milestone, with the 0.8.0 release. This
release includes many improvements to usability, error handling and general
stability of the product.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi or github:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.0.tar.gz

https://github.com/downloads/saltstack/salt-cloud/salt-cloud-0.8.0.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch, and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. Package availability will be announced on the salt mailing list.

Increased Formatting Options

Additional options have been added to salt-cloud -Q, to support the same kinds
of formatting already available in Salt:

--raw-out
--text-out
--yaml-out
--json-out
--no-color

More Helpful Error Messages

As an ongoing effort, we have been cleaning up and adding error messages in an
attempt to make salt-cloud more helpful when something goes wrong. This
includes displaying messages as they are received from libcloud.

Specify Grains in Map Files

Previously, map files only had the ability to specify a profile name, and the
node names that would be associated with it. Now you can also specify grains
that will be laid down in each individual node:

vm_profile:
 - mynodename:
 minion:
 master: salt-master
 grains:
 fromage: tasty

These grains can also be specified in the profile itself. When this happens,
the grains in map files will override grains in the profile. For example:

vm_profile:
 provider: gogrid
 size: 512MB
 image: CentOS 6.2 (64-bit) w/ None
 os: RHEL6
 minion:
 master: salt.mycompany.com
 grains:
 french: fries

In this example, mynodename will include grains for both fromage and french,
but the master will be salt-master, not salt-mycompany.com.

AWS Improvements

AWS is much more complex to work with than any of the other supported cloud
providers. As such, additional configuration has been added in order to
accomodate their usage:

		AWS.ssh_username:

		Because AWS images can include a variety of different usernames for the
initial login, this option allows you to specify which one(s) to use to
install salt upon firstboot.

		AWS.ssh_interface:

		AWS instances include both private and public IP addresses. By default,
salt-cloud will use the public IP to login. In situations where the
salt-master is also located within AWS, the private IP can be used instead.

		AWS.location and AWS.availability_zone:

		These options allow you to specify from within salt-cloud, which AWS
locations your machines spin up in.

Ubuntu Fixes

Ubuntu packages automatically start the service upon installation, and needed
to be handled differently in the deploy script. Configuration is now laid down
before the package is installed, so that the minion can make its initial start
happen with the correct configuration.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.3.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.3 Release Notes

Welcome to 0.8.3! While there are some new features, this release of Salt
Cloud is primarily targeted at stability. Read on to see what’s happened.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi or github:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.3.tar.gz

https://github.com/downloads/saltstack/salt-cloud/salt-cloud-0.8.3.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. Package availability will be announced on the salt mailing list.

No Deploy

Salt Cloud was originally intended to spin up machines and deploy Salt on them,
but several use cases have arisen in which this is not the appropriate action.
For instance, when booting into new platforms which may not even support Salt
just yet, it makes no sense to try and install a non-existant package. In these
instances, you can add the –no-deploy argument to the salt-cloud command to
skip running the deploy script.

It is also possible to configure Salt Cloud to default to never deploying:

deploy: False

Firing Events

Salt Cloud is starting to make use of Salt’s event system. If you are watching
the event bus on the Salt Master, you can now watch for events to fire when
minions are created or destroyed.

Start Actions

This is an experimental feature which some users may find handy. You may now
configure a start_action for a deployed VM:

start_action: state.highstate

If configured, when the salt-cloud command runs the deploy script, it will open
a subprocess to wait for the salt-minion service to start, and check in with
the master (via the salt event bus). This feature does not currently work
smoothly with all providers, particularly the ones which do not use “root” as
the default login users. Your mileage will vary.

Exception Handling

There were a handful of spots in the code which would exit when an error
occurred, sometimes without any meaningful error messages. This was was neither
helpful to the user, nor Pythonic. Errors now should fire an exception of some
sort, and if the error is Salt- or Salt Cloud-specific, a SaltException will be
fired. This also helps pave the way for API usage of Salt Cloud.

Provider-Specific Actions

This is largely a programmatic addition at this point, which will continue to
expand into userland. All providers supported by libcloud provide a minimum
level of functionality that Salt Cloud takes advantage of. Most providers also
include a number of “extra” functions which are non-standard. Some of these
are critical in certain instances. For instance, most providers will shut down
a VM for you when you send a destroy command, but Joyent requires you to
manually shut it down first. This was previously only doable via their web
interface. You may now pass a supported –action (or -a) to a cloud provider:

salt-cloud --action stop joyentvm1

All cloud providers support the destroy command via an action:

salt-cloud -a destroy mymachine1 mymachine2 mymachine2

Human-Readable States

Most of our cloud providers are accessed via libcloud, which provides a
numerical code declaring the current state of the machine. This state is
viewable via the various query options. Unfortunately, if you don’t know what
the codes mean, they’re largely useless to you. Now, with the -Q or –query
option, a human-readable state (i.e. RUNNING) will de displayed instead).

It should be noted that because some users are running salt-cloud via another
script, the -F/–full-query and -S/–select-query options still return the
numerical code.

Various other Features and Stability Fixes

The above features addressed many stability issues. Additionally, the following
have been addressed.

Salt Cloud requires at least libcloud 0.11.4. If you are not running at least
this version, an exception will be fired.

A certain amount of minion configuration is required for all VMs. If you fail
to specify any, a (mostly empty) minion config will be created for you. The
default master for this config will be “salt”.

Previously, Joyent supported all Salt Cloud features without using Salt Cloud’s
own built-in deploy function. This is no longer the case, and so the Joyent
module has been updated appropriately.

Some log settings where previously ignored. This has been fixed.

The Rackspace module previously would silently strip certain characters from
a VM name. It now has a base set of characters that it will verify against, and
raise an exception if an illegal character was specified. This functionality is
also available for other cloud providers, but not currently set up for them.

AWS introduced a new region in Sydney. This region is not available in the
latest official libcloud release, but if you happen to be running libcloud out
of trunk, it will be supported by Salt Cloud.

Additional logging and PEP-8 fixes have also been applied. This should only
affect developers.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.2.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.2 Release Notes

This is a great release for Salt Cloud! New cloud providers have been added,
and the deploy functionality has been embiggened! Read on to see the cromulent
new features.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi or github:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.2.tar.gz

https://github.com/downloads/saltstack/salt-cloud/salt-cloud-0.8.2.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch, and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. Package availability will be announced on the salt mailing list.

Select Query Option

The last release of Salt Cloud added the -F/–full query option, to display
all information available for a particular instance. We now also have the -S
or –select-query option, which lets you specify which fields to display. Any
fields not specified will not be displayed, and if you specify a field that
doesn’t exist on a particular provider, it will be ignored for them. Just
add a query.selection option to /etc/salt/cloud like such:

query.selection:
 - id
 - state
 - public_ips
 - keyname
 - TOTALXFER

os vs script

In a cloud profile, you need to specify which deploy script to use to install
Salt on the newly-provisioned VM. The option for this has always been ‘os’,
which has been confusing to some. As of this release, you may now specify
‘script’ instead of ‘os’. If you specify both, the value for ‘script’ will be
used. See the SmartOS Deploy Script below for an example.

SmartOS Deploy Script

Of particular interest to Joyent users may be the new SmartOS deploy script.
Salt itself is not fully-supported on SmartOS just yet, in part because ZeroMQ
is also not yet supported. When this script is used for deployment, it will
automatically install the required libraries and build ZeroMQ, and then use
easy_install to install the latest versions of PyZMQ and Salt. To use this,
just specify SmartOS as the ‘os’ or ‘script’ option in your cloud.profiles:

joyent_smartos:
 provider: joyent
 size: Extra Small 512 MB
 image: smartos
 script: SmartOS

OpenStack and IBM Modules

Support has been added for clouds using OpenStack (OPENSTACK) and for IBM’s
SmartCloud Enterprise (IBMSCE) offering. We know that people have already
started using the OpenStack module, because pull requests have already been
merged from the community. This module has been tested against both the HP
and the Rackspace implementations of OpenStack. This can be a tricky module
to configure, depending on your provider, so some examples are provided here:

For HP
OPENSTACK.identity_url: 'https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/'
OPENSTACK.compute_name: Compute
OPENSTACK.compute_region: 'az-1.region-a.geo-1'
OPENSTACK.tenant: myuser-tenant1
OPENSTACK.user: myuser
OPENSTACK.ssh_key_name: mykey
OPENSTACK.ssh_key_file: '/etc/salt/hpcloud/mykey.pem'
OPENSTACK.password: mypass

For Rackspace
OPENSTACK.identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
OPENSTACK.compute_name: cloudServersOpenStack
OPENSTACK.compute_region: DFW
OPENSTACK.tenant: 5555555
OPENSTACK.user: myuser
OPENSTACK.password: mypass
OPENSTACK.protocol: ipv4

It is important to note that currently, only password-based authentication is
provided through the Salt Cloud OpenStack module.

IBM has fewer things that need to be configured, but setting them up can be
tricky as well. An example might look like:

IBMSCE.user: myuser@mycorp.com
IBMSCE.password: mypass
IBMSCE.ssh_key_name: mykey
IBMSCE.ssh_key_file: '/etc/salt/ibm/mykey.pem'
IBMSCE.location: Raleigh

The location currently must be configured in order to create an instance, but
not to query the IBM cloud. This is important, because you need to use
salt-cloud –list-locations (with the other options already set) in order to
find the name of the location that you want to use.

OpenStack with Salt

This isn’t specifically another Salt Cloud feature, but it should be noted that
with the release of Salt 0.10.5, OpenStack is not only the first Cloud product,
but in fact the first piece of software explicitly supported by both Salt Cloud
(from a user perspective) and Salt itself (from an admin perspective).

Salt Cloud Logging

Those who have tried to hack on Salt Cloud may have discovered a complete lack
of logging support. With this release, Salt Cloud has started to implement
the logging features already available in Salt. The default log location is
/var/log/salt/cloud (with a default level of warn), but it can be changed in
your cloud configuration file:

log_file: /var/log/salt/cloud
log_level_logfile: debug

If you would like to change the default logging level for the command line, you
can also configure that in the same place:

log_level: debug

Check salt-cloud –help for a list of logging levels, which can also be
specified from the command line.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.11.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.11 Release Notes

Welcome to 0.8.11! This is a bugfix release for 0.8.10, which contained some
issues concerning EC2. The entire repository has been merged upstream into the
main Salt repository. All future changes will be found there, and any future
issues and pull requests need to be filed there:

https://github.com/saltstack/salt

Existing issues in the Salt Cloud issue tracker will remain there, and efforts
to close standing issues there will continue. We will not, however, be able to
merge additional pull requests made against the old salt-cloud repository.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.11.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.10.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.10 Release Notes

Welcome to 0.8.10! This is the last official release of Salt Cloud as its own
independent package. The entire repository has been merged upstream into the
main Salt repository. All future changes will be found there, and any future
issues and pull requests need to be filed there:

https://github.com/saltstack/salt

Existing issues in the Salt Cloud issue tracker will remain there, and efforts
to close standing issues there will continue. We will not, however, be able to
merge additional pull requests made against the old salt-cloud repository.

This release exists to provide to the community all of the changes made between
0.8.9 and the merger of Salt and Salt Cloud. This is due to significant demand
for a final Salt Cloud release to tide users over with the new features, and bug
fixes, until the next feature release of Salt.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.10.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

New Event System Code

The most important aspect of this release involves updating the event code in
Salt Cloud to handle the changes made to the event system in Salt 0.17.0.
Without these changes, machines will be spun up properly, and then appear to
fail. This release fixes that.

New SoftLayer Drivers

Drivers are available for both the SoftLayer Cloud Layer (softlayer) and the
SoftLayer Baremetal/Hardware Layer (softlayer-hw). These are especially
important, following IBM’s announcement concerning phasing out their Smart Cloud
Enterprise product in January 2014 in favor of SoftLayer.

The configuration for both drivers is essentially identical:

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/softlayer.conf:

my-softlayer-config:
 # SoftLayer account api key
 user: MYLOGIN
 apikey: JVkbSJDGHSDKUKSDJfhsdklfjgsjdkflhjlsdfffhgdgjkenrtuinv
 provider: softlayer

my-softlayer-hw-config:
 # SoftLayer account api key
 user: MYLOGIN
 apikey: JVkbSJDGHSDKUKSDJfhsdklfjgsjdkflhjlsdfffhgdgjkenrtuinv
 provider: softlayer-hw

However, profile configuration between the two is very different:

base_softlayer_ubuntu:
 provider: my-softlayer
 image: UBUNTU_LATEST
 cpu_number: 1
 ram: 1024
 disk_size: 100
 local_disk: True
 hourly_billing: True
 domain: example.com
 location: sjc01
 # Optional
 max_net_speed: 1000
 private_vlan: 396
 private_network: True
 private_ssh: True
 # May be used _instead_of_ image
 global_identifier: 320d8be5-46c0-dead-cafe-13e3c51

base_softlayer_hw_centos:
 provider: my-softlayer-hw
 # CentOS 6.0 - Minimal Install (64 bit)
 image: 13963
 # 2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
 size: 1921
 # 250GB SATA II
 hdd: 19
 # San Jose 01
 location: 168642
 domain: example.com
 # Optional
 vlan: 396
 port_speed: 273
 banwidth: 248

Those of you who are familiar with SoftLayer may already be comfortable with
these usages. For a more detailed discussion, check the SoftLayer Getting
Started guide:

http://salt-cloud.readthedocs.org/en/latest/topics/softlayer.html

Support for IOPS Volumes in EC2

It is now possible to specify a type when creating a new volume on EC2. The
default is standard, but it is now possible to specify io1 instead. For
example:

base_ec2_db:
 provider: my-ec2-southeast-public-ips
 image: ami-e565ba8c
 size: m1.xlarge
 ssh_username: ec2-user
 volumes:
 - { size: 10, device: /dev/sdf }
 - { size: 10, device: /dev/sdg, type: io1, iops: 1000 }
 - { size: 10, device: /dev/sdh, type: io1, iops: 1000 }

Windows (Minion) Support

Salt Cloud is now able to spin up minions on Windows servers. There are some
caveats here, mainly in that port 445 needs to be available on the Windows
image used (and this is usually not the default). For more information, check
the docs for Spinning up Windows Minions:

http://salt-cloud.readthedocs.org/en/latest/topics/windows.html

OpenStack Support for Userdata

The OpenStack driver now supports passing in a file to be sent into an instance
as userdata. Configuration in Salt Cloud itself is simple, and can be
performed in either the provider or profile configuration:

userdata_file: /tmp/userdata.txt

A more detailed explanation of that this setting does in OpenStack can be found
in their documentation:

http://docs.openstack.org/user-guide/content/user-data.html

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/index.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Release notes and upgrade instructions

		Salt Cloud 0.8.11 Release Notes

		Salt Cloud 0.8.10 Release Notes

		Salt Cloud 0.8.9 Release Notes

		Salt Cloud 0.8.7 Release Notes

		Salt Cloud 0.8.6 Release Notes

		Salt Cloud 0.8.5 Release Notes

		Salt Cloud 0.8.4 Release Notes

		Salt Cloud 0.8.3 Release Notes

		Salt Cloud 0.8.2 Release Notes

		Salt Cloud 0.8.1 Release Notes

		Salt Cloud 0.8.0 Release Notes

		Salt Cloud 0.7.0 Release Notes

		Salt Cloud 0.6.0 Release Notes

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.6.0.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.6.0 Release Notes

The new Salt project, Salt Cloud, is introduced with version 0.6.0. Salt Cloud
has been developed to ease the automation and integration of Salt with public
cloud providers by allowing cloud vms to be cleanly defined, created and
automatically hooked back into a Salt Master.

While Salt Cloud is primarily made to build cloud vms to tie into a Salt Mater,
it has been created in a generic way, so that it can be used to provision and
hook systems of any type via the familiar Salt modules system.

This release supports three public cloud providers (all via libcloud),
Amazon EC2, Rackspace Cloud and Linode.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi or github:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.6.0.tar.gz

https://github.com/downloads/saltstack/salt-cloud/salt-cloud-0.6.0.tar.gz

Packages are not yet available, Salt Cloud requires three dependencies, the
salt libs, libcloud, and paramiko.

Extensible With Cloud Modules

The Salt loader system has been employed to make adding support for additional
public cloud systems just as modular and simple as adding support for new
package managers in Salt.

Adding support for a new cloud provider is extremely simple, just add a cloud
module and everything cleanly links together.

Define VM Profiles

The way a vms is created is done via profiles. Profiles are used to define what
properties a vm will have, the cloud provider, the size and the image.

centos_rackspace:
 provider: rackspace
 image: CentOS 6.2
 size: 1024 server
 os: RHEL6
 minion:
 grains:
 role: webserver
 master: salt.example.com

This profile will be used to create vms on Rackspace cloud with the CentOS 6.2
image and the Rackspace 1024 vm size. Particulars of the minion config can
also be specified.

Individual vms can be created from profiles:

salt-cloud -p centos_rackspace web1

This command creates a vms with the name web1 on the Rackspace cloud and
connects the new vm to a Salt Master located at salt.example.com. The new VM
has the Salt id of web1.

Define Maps of Profiles

When it is desired to have a predefined mapping of many, or a specific group
of vms then a cloud map can be defined:

centos_rackspace:
 web1
 web2
 web3
 web4
centos_linode:
 redis1
 riak1
 riak2
 riak3
ubuntu_ec2:
 dev1
 dev2
 cassandra1
 cassandra2
 cassandra3

This map file will create vms named web 1-4 using the centos_rackspace profile
on rackspace, the redis and riak vms on linode and the dev and Cassandra vms on
ec2. It can be run with salt-cloud:

salt-cloud -m mapfile

When creating more than one vm the -P option can be passed, to make the vms
provision in parallel, greatly speeding up large scale expansions of vms.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.7.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.7 Release Notes

Welcome to 0.8.7! This is a landmark release which adds two new cloud providers,
one pseudo cloud provider, and an exciting, flexible new configuration format!
Don’t worry, the old config format will still work, and you can wait to migrate
to the new format when you’re ready. However, the old and new formats are not
compatible, so don’t try and mix them.

We would like to extend a special thanks to the folks at X-Mission for granting
us access to their cloud so that we could develop the Parallels driver! Without
their help, this driver would not exist. Please take a moment to take a look at
their cloud offering:

http://xmission.com/cloud_hosting

We would also like to thank Digital Ocean for their help and resources while
developing the driver for their cloud offering. The folks over there have been
very friendly and helpful! Please take a moment to check them out:

https://www.digitalocean.com/

For more details, read on!

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.7.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

Added Parallels Support

As mentioned above, X-Mission was kind enough to lend us the resources to write
a cloud driver for Parallels-based cloud providers. This driver requires only
a user, password and a url. These can be obtained from your cloud
provider.

		Using the legacy configuration format:

PARALLELS.user: myuser
PARALLELS.password: xyzzy
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

Added Digital Ocean Support

Digital Ocean has been a highly-requested cloud provider, and we are pleased to
be able to meet the demand. Only a client_key and an api_key are
required for Digital Ocean.

		Using the legacy configuration format:

DIGITAL_OCEAN.client_key: wFGEwgregeqw3435gDger
DIGITAL_OCEAN.api_key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg

Updated Configuration Format

This is a massive change that we have been wanting for months to add. We would
like to extend special thanks to Pedro Algarvio (s0undt3ch) for his tireless
efforts, which included significant changes to the codebase.

The old configuration format will still function as before, so there is no
pressure just yet to move over. However, the configuration formats are not
compatible with each other, so when you’re ready to switch over, make sure to
switch everything over at once.

Luckily, the changes are not difficult to get used to. The old format looked
like the following:

SOMEPROVIDER.option1: some_stuff
SOMEPROVIDER.option2: some_other_stuff

The new format for the above would look like:

my_provider:
 option1: some_stuff
 option2: some_other_stuff
 provider: someprovider

This update allows for multiple accounts using the same provider. For instance,
if using multiple accounts with Amazon EC2, your configuration may look like:

my-first-ec2:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: ec2

my-second-ec2:
 id: LJLKJYGHJGRYCI
 key: 'rigjksjdhasdfgnkdjgfsgm;woormgl/ase'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: ec2

Profiles are then configured using the name of the configuration block, rather
than the provider name. For instance:

rhel-ec2:
 provider: my-second-ec2
 image: ami-e565ba8c
 size: Micro Instance

Likewise, issuing commands will reference the name of the configuration block,
rather than the provider name. For instance:

salt-cloud --list-sizes my-first-ec2

This is critical for using multiple clouds, which use the same Salt Cloud
driver. For instance, Salt Cloud has been gaining popularity for usage with
private clouds utilizing OpenStack. The following two commands are likely to
return different data:

salt-cloud --list-images openstack-hp
salt-cloud --list-images openstack-rackspace

Provider Aliases

It is also possible to have multiple providers configured with the same name.
This allows for similar environments across multiple providers to share the same
name. For instance:

production-config:
 - id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: aws

 - id: LJLKJYGHJGRYCI
 key: 'rigjksjdhasdfgnkdjgfsgm;woormgl/ase'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 provider: ec2

With this configuration, you can then set up the following profiles:

development-instances:
 provider: production-config:aws
 size: Micro Instance
 ssh_username: ec2_user
 securitygroup: default

staging-instances:
 provider: production-config:ec2
 size: Micro Instance
 ssh_username: ec2_user
 securitygroup: default

Keep in mind that if there is only one configured provider with a specific name,
you do not have to specify an alias. But if multiple are set up as above, you
must use the aliased name.

salt-cloud --list-sizes production-config:ec2

Extending Profiles

If using the new configuration format, you will have the ability to extend
profile definitions. This can make profile configuration much easier to read and
manage. For instance:

development-instances:
 provider: my-ec2-config
 size: Micro Instance
 ssh_username: ec2_user
 securitygroup:
 - default
 deploy: False

Amazon-Linux-AMI-2012.09-64bit:
 image: ami-54cf5c3d
 extends: development-instances

Fedora-17:
 image: ami-08d97e61
 extends: development-instances

CentOS-5:
 provider: my-aws-config
 image: ami-09b61d60
 extends: development-instances

In this case, the CentOS-5 profile will in fact look like:

CentOS-5:
 provider: my-aws-config
 size: Micro Instance
 ssh_username: ec2_user
 securitygroup:
 - default
 deploy: False
 image: ami-09b61d60

Because it copied all of the configuration from development-instances, and
overrode the provider with a new provider.

Extending Providers

If using the new configuration format, providers can be extended in the same
way. For instance, the following will set up two different providers, each
sharing some of the same configuration:

my-develop-envs:
 - id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 location: ap-southeast-1
 availability_zone: ap-southeast-1b
 provider: aws

 - user: myuser@mycorp.com
 password: mypass
 ssh_key_name: mykey
 ssh_key_file: '/etc/salt/ibm/mykey.pem'
 location: Raleigh
 provider: ibmsce

my-productions-envs:
 - extends: my-develop-envs:ibmsce
 user: my-production-user@mycorp.com
 location: us-east-1
 availability_zone: us-east-1

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.9.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.9 Release Notes

Welcome to 0.8.9! It has been a long time since the last release, and we’re
excited to get this one out the door!

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.9.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

New Cloudstack Driver

One of the more impressive stories this release involves the Cloud Stack driver,
written by Sebastien Goasguen. After meeting Thomas Hatch at the LinuxTag
conference, Sebastien went out and wrote a Cloud Stack driver for Salt Cloud, in
less time than it took to compile these release notes. His story is here:

http://sebgoa.blogspot.com/2013/05/the-linuxtag-hack.html

Several people have been asking for this driver, and we are very grateful to
Sebastien for adding it for us!

Updated Joyent Support

Joyent has updated their API, and Salt Cloud has included the updates in this
version. Bob Szabo did the bulk of this work, and we would like to extend a
special thanks to him for his efforts. The Joyent driver has also been
optimized to access the API directly, resulting in faster operations, and
opening up more of Joyent’s native API for future use. Some of the features
that have already been added as a result of this pertain to SSH key management,
directly from Salt Cloud. The following functions have been added:

		list_keys

		show_key

		import_key

		delete_key

Mapping Independent Hierarchies

Salt Cloud 0.8.5 introduced the ability to spin up an instance and install
the salt-master package on it. This functionality has been extended, so that
a map file may now spin up a new master, and its minions, and pre-seed the
master with the minion keys so that they are immediately accepted by the time
the new salt-master starts up, and each minion is started up. A map file that
can accomplish this might look like:

Ubuntu-12.04-64bit:
 TT_Master:
 minion:
 retry_dns: 5
 make_master: True
 TT2:
 minion:
 retry_dns: 5
 TT3:
 minion:
 retry_dns: 5

This functionality was added by Pedro Algarvio, to spin up hierarchies for
testing purposes, and then remove them when finished. This can be instrumental
to organizations wishing to extend their testing and build environments. We
would like to thank him for this, and the many other contributions that he has
added to this and other releases!

Parallel Creation and Logging

There have been reports of issues in the past pertaining to screen issues when
running salt-cloud in parallel mode (-P). This mode has been greatly stabilized
in this release. Additionally, parallel logging capabilities have been added,
allowing users to store parallel execution logs. Finally, keyboard interrupts
(such as ^C) are now properly handled.

Internal Data Structure

On 0.8.7 we unleashed the power of multiple cloud provider profiles, it even
allows multiple profiles for the same cloud provider. That was a much asked
feature and was adopted by users right away. Unfortunately, all that power had
a small point of failure when multiple profiles existed for the same cloud
provider. Only the first was used in most operations.
To fix this small issue, salt-cloud’s internal data structure changed quite a
bit. Every action, function, virtual machine creation, etc, is now, always
“attached” to a provider alias and the(one of the) cloud drivers defined.
Internally, when loading the configuration, all the defined profiles are
matched to the available providers. If the provider does not exits, the profile
gets removed. The same happens for the defined providers, they all know which
profiles they can manage. This closes that small point of failure.

Data Presentation

With the internal data structure change also came a data presentation change.
Most, unless not applicable, output is now done in an <provider-alias>
→ <provider-driver> → <detailed-output>. An example is
always better. For an ec2-config provider alias with an ec2 driver
configured:

salt-cloud -f show_image ec2-config image=ami-35eb835c

ec2-config:

 ec2:

 - architecture:
 x86_64
 - blockDeviceMapping:

 item:

 deviceName:
 /dev/sda
 ebs:

 deleteOnTermination:
 true
 snapshotId:
 snap-59724004
 volumeSize:
 8
 volumeType:
 standard
 - description:
 OmniOS r151006 Base (Stable)
 - hypervisor:
 xen
 - imageId:
 ami-35eb835c
 - imageLocation:
 182711560792/OmniOS r151006c
 - imageOwnerId:
 182711560792
 - imageState:
 available
 - imageType:
 machine
 - isPublic:
 true
 - kernelId:
 aki-b4aa75dd
 - name:
 OmniOS r151006c
 - rootDeviceName:
 /dev/sda
 - rootDeviceType:
 ebs
 - virtualizationType:
 paravirtual

We’re now always aware of what was done using what.

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/releases/0.8.5.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Salt Cloud 0.8.5 Release Notes

Welcome to 0.8.5! Some important things have happened in this release, that
you’ll want to take note of. The first thing that may trip you up when
installing directly is that Paramiko is no longer a dependency, and botocore
and sshpass are new dependencies. Read on to see what else has happened.

Documentation

The documentation for Salt Cloud can be found on Read the Docs:
http://salt-cloud.readthedocs.org

Download

Salt Cloud can be downloaded and install via pypi:

http://pypi.python.org/packages/source/s/salt-cloud/salt-cloud-0.8.5.tar.gz

Some packages have been made available for salt-cloud and more on on their
way. Packages for Arch and FreeBSD are being made available thanks to the
work of Christer Edwards, and packages for RHEL and Fedora are being created
by Clint Savage. The Ubuntu PPA is being managed by Sean Channel. Package
availability will be announced on the salt mailing list.

Salt Bootstrap

In 0.8.4, the default deploy script was set to bootstrap-salt-minion. Since
then, the Salt Boostrap script has been extended to be able to install more
than just minions, and as such, has been renamed. It is now called
bootstrap-salt, and has been renamed in Salt Cloud accordingly. Check out the
salt-bootstrap project for more details:

https://github.com/saltstack/salt-bootstrap

Just another reminder: For those of you still using “os” in your profiles, this
option was renamed to “script” in 0.8.2, and your configuration should be
updated accordingly.

Updating Salt Bootstrap

If you like running the latest and greatest version of salt-bootstrap, but
you’re sick of tracking down the source directory to update it, a new option
has been added to update it for you.

salt-cloud -u
salt-cloud --update-bootstrap

Bear in mind that this updates to the latest (unstable) version, so use with
caution.

Modify AWS Tags

One of the features of AWS is the ability to tag resources. In fact, under the
hood, the names given to EC2 instances by salt-cloud are actually just stored
as a tag called Name. The ability to manage tags on AWS instances has now been
added to Salt Cloud.

salt-cloud -a get_tags mymachine
salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'
salt-cloud -a del_tags mymachine tag1,tag2,tag3

Rename AWS Instances

As mentioned above, AWS instances are named via a tag. However, renaming an
instance by renaming its tag will cause the salt keys to mismatch. A rename
function has been added which renames both the instance, and the salt keys.

salt-cloud -a rename mymachine newname=yourmachine

AWS Termination Protection

AWS allows the user to enable and disable termination protection on a specific
instance. An instance with this protection enabled cannot be destroyed.

salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Setting up New Salt Masters

It has become increasingly common for users to set up multi-hierarchal
infrastructures using Salt Cloud. This sometimes involves setting up an
instance to be a master in addition to a minion. With that in mind, you can
now law down master configuration on a machine by specifying master options
in the profile or map file.

make_master: True

This will cause Salt Cloud to generate master keys for the instance, and tell
salt-bootstrap to install the salt-master package, in addition to the
salt-minion package.

The default master configuration is usually appropriate for most users, and
will not be changed unless specific master configuration has been added to the
profile or map:

master:
 user: root
 interface: 0.0.0.0

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for
salt-bootstrap to put in place. After the script has run, they are deleted. To
keep these files around (mostly for debugging purposes), the –keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done
for images which require the use of sudo, and therefore do not allow remote
root logins, even for file transfers (which makes /root/ unavailable).

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to
them, but salt-bootstrap has been extended quite a bit, and this may be
necessary. script_args can be specified in either the profile or the map
file, to pass arguments to the deploy script:

aws-amazon:
 provider: aws
 image: ami-1624987f
 size: Micro Instance
 ssh_username: ec2-user
 script: bootstrap-salt
 script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

script_args: | head

Remove Old SSH Keys

When an instance is destroyed, its IP address is usually recycled back into
the IP pool. When such an IP is reassigned to you, and the old key is still in
your known_hosts file, the deploy script will fail due to mismatched SSH keys.
To mitigate this, add the following to your main cloud configuration:

delete_sshkeys: True

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

topics/install/index.html

 Navigation

 		
 index

 		salt-cloud 0.8.11 documentation »

Install Salt Cloud

Salt Cloud has only two dependencies:

		salt

		apache-libcloud

Of course, salt has it’s own set of dependencies and the same applies to
apache-libcloud.

Installing Salt Cloud for development

Clone the repository using:

git clone https://github.com/saltstack/salt.git

Create a new virtualenv [http://pypi.python.org/pypi/virtualenv]:

virtualenv /path/to/your/virtualenv

On Arch Linux, where Python 3 is the default installation of Python, use the
virtualenv2 command instead of virtualenv.

Note

Using system Python modules in the virtualenv

To use already-installed python modules in virtualenv (instead of having pip
download and compile new ones), run virtualenv --system-site-packages
Using this method eliminates the requirement to install the salt
dependencies again, although it does assume that the listed modules are all
installed in the system PYTHONPATH at the time of virtualenv creation.

Activate the virtualenv:

source /path/to/your/virtualenv/bin/activate

Install Salt (which contains Salt Cloud) (and dependencies) into the virtualenv:

pip install M2Crypto # Don't install on Debian/Ubuntu (see below)
pip install pyzmq PyYAML pycrypto msgpack-python jinja2 psutil
pip install apache-libcloud
pip install -e ./salt # the path to the salt-cloud git clone

Note

Installing M2Crypto

swig and libssl-dev are required to build M2Crypto. To fix the
error command 'swig' failed with exit status 1 while installing
M2Crypto, try installing it with the following command:

env SWIG_FEATURES="-cpperraswarn -includeall -D__`uname -m`__ -I/usr/include/openssl" pip install M2Crypto

Debian and Ubuntu systems have modified openssl libraries and mandate that
a patched version of M2Crypto be installed. This means that M2Crypto
needs to be installed via apt:

apt-get install python-m2crypto

This also means that pulling in the M2Crypto installed using apt requires
using --system-site-packages when creating the virtualenv.

Or using a pre-patched M2Crypto

pip install http://dl.dropbox.com/u/174789/m2crypto-0.20.1.tar.gz

Using easy_install to Install Salt Cloud

If you are installing using easy_install, you will need to define a
USE_SETUPTOOLS environment variable, otherwise dependencies will not
be installed:

USE_SETUPTOOLS=1 easy_install salt-cloud

Installing Salt Cloud from Git

To install salt cloud from git without any development purposes in mind,
install the required dependencies replacing the last step with:

pip install git+https://github.com/saltstack/salt-cloud.git#egg=salt_cloud

 © Copyright 2012 - 2013, Salt Stack, Inc..
 Created using Sphinx 1.3.1.

_static/comment.png

_static/minus.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

